d uchun yechish
d = \frac{25}{14} = 1\frac{11}{14} \approx 1,785714286
d=0
Baham ko'rish
Klipbordga nusxa olish
25+45d-10d^{2}=\left(5+2d\right)^{2}
5-d ga 5+10d ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
25+45d-10d^{2}=25+20d+4d^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5+2d\right)^{2} kengaytirilishi uchun ishlating.
25+45d-10d^{2}-25=20d+4d^{2}
Ikkala tarafdan 25 ni ayirish.
45d-10d^{2}=20d+4d^{2}
0 olish uchun 25 dan 25 ni ayirish.
45d-10d^{2}-20d=4d^{2}
Ikkala tarafdan 20d ni ayirish.
25d-10d^{2}=4d^{2}
25d ni olish uchun 45d va -20d ni birlashtirish.
25d-10d^{2}-4d^{2}=0
Ikkala tarafdan 4d^{2} ni ayirish.
25d-14d^{2}=0
-14d^{2} ni olish uchun -10d^{2} va -4d^{2} ni birlashtirish.
d\left(25-14d\right)=0
d omili.
d=0 d=\frac{25}{14}
Tenglamani yechish uchun d=0 va 25-14d=0 ni yeching.
25+45d-10d^{2}=\left(5+2d\right)^{2}
5-d ga 5+10d ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
25+45d-10d^{2}=25+20d+4d^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5+2d\right)^{2} kengaytirilishi uchun ishlating.
25+45d-10d^{2}-25=20d+4d^{2}
Ikkala tarafdan 25 ni ayirish.
45d-10d^{2}=20d+4d^{2}
0 olish uchun 25 dan 25 ni ayirish.
45d-10d^{2}-20d=4d^{2}
Ikkala tarafdan 20d ni ayirish.
25d-10d^{2}=4d^{2}
25d ni olish uchun 45d va -20d ni birlashtirish.
25d-10d^{2}-4d^{2}=0
Ikkala tarafdan 4d^{2} ni ayirish.
25d-14d^{2}=0
-14d^{2} ni olish uchun -10d^{2} va -4d^{2} ni birlashtirish.
-14d^{2}+25d=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
d=\frac{-25±\sqrt{25^{2}}}{2\left(-14\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -14 ni a, 25 ni b va 0 ni c bilan almashtiring.
d=\frac{-25±25}{2\left(-14\right)}
25^{2} ning kvadrat ildizini chiqarish.
d=\frac{-25±25}{-28}
2 ni -14 marotabaga ko'paytirish.
d=\frac{0}{-28}
d=\frac{-25±25}{-28} tenglamasini yeching, bunda ± musbat. -25 ni 25 ga qo'shish.
d=0
0 ni -28 ga bo'lish.
d=-\frac{50}{-28}
d=\frac{-25±25}{-28} tenglamasini yeching, bunda ± manfiy. -25 dan 25 ni ayirish.
d=\frac{25}{14}
\frac{-50}{-28} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
d=0 d=\frac{25}{14}
Tenglama yechildi.
25+45d-10d^{2}=\left(5+2d\right)^{2}
5-d ga 5+10d ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
25+45d-10d^{2}=25+20d+4d^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5+2d\right)^{2} kengaytirilishi uchun ishlating.
25+45d-10d^{2}-20d=25+4d^{2}
Ikkala tarafdan 20d ni ayirish.
25+25d-10d^{2}=25+4d^{2}
25d ni olish uchun 45d va -20d ni birlashtirish.
25+25d-10d^{2}-4d^{2}=25
Ikkala tarafdan 4d^{2} ni ayirish.
25+25d-14d^{2}=25
-14d^{2} ni olish uchun -10d^{2} va -4d^{2} ni birlashtirish.
25d-14d^{2}=25-25
Ikkala tarafdan 25 ni ayirish.
25d-14d^{2}=0
0 olish uchun 25 dan 25 ni ayirish.
-14d^{2}+25d=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-14d^{2}+25d}{-14}=\frac{0}{-14}
Ikki tarafini -14 ga bo‘ling.
d^{2}+\frac{25}{-14}d=\frac{0}{-14}
-14 ga bo'lish -14 ga ko'paytirishni bekor qiladi.
d^{2}-\frac{25}{14}d=\frac{0}{-14}
25 ni -14 ga bo'lish.
d^{2}-\frac{25}{14}d=0
0 ni -14 ga bo'lish.
d^{2}-\frac{25}{14}d+\left(-\frac{25}{28}\right)^{2}=\left(-\frac{25}{28}\right)^{2}
-\frac{25}{14} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{28} olish uchun. Keyin, -\frac{25}{28} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
d^{2}-\frac{25}{14}d+\frac{625}{784}=\frac{625}{784}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{28} kvadratini chiqarish.
\left(d-\frac{25}{28}\right)^{2}=\frac{625}{784}
d^{2}-\frac{25}{14}d+\frac{625}{784} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(d-\frac{25}{28}\right)^{2}}=\sqrt{\frac{625}{784}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
d-\frac{25}{28}=\frac{25}{28} d-\frac{25}{28}=-\frac{25}{28}
Qisqartirish.
d=\frac{25}{14} d=0
\frac{25}{28} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}