Asosiy tarkibga oʻtish
w uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5w-2w^{2}=52
5-2w ga w ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5w-2w^{2}-52=0
Ikkala tarafdan 52 ni ayirish.
-2w^{2}+5w-52=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-5±\sqrt{5^{2}-4\left(-2\right)\left(-52\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 5 ni b va -52 ni c bilan almashtiring.
w=\frac{-5±\sqrt{25-4\left(-2\right)\left(-52\right)}}{2\left(-2\right)}
5 kvadratini chiqarish.
w=\frac{-5±\sqrt{25+8\left(-52\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
w=\frac{-5±\sqrt{25-416}}{2\left(-2\right)}
8 ni -52 marotabaga ko'paytirish.
w=\frac{-5±\sqrt{-391}}{2\left(-2\right)}
25 ni -416 ga qo'shish.
w=\frac{-5±\sqrt{391}i}{2\left(-2\right)}
-391 ning kvadrat ildizini chiqarish.
w=\frac{-5±\sqrt{391}i}{-4}
2 ni -2 marotabaga ko'paytirish.
w=\frac{-5+\sqrt{391}i}{-4}
w=\frac{-5±\sqrt{391}i}{-4} tenglamasini yeching, bunda ± musbat. -5 ni i\sqrt{391} ga qo'shish.
w=\frac{-\sqrt{391}i+5}{4}
-5+i\sqrt{391} ni -4 ga bo'lish.
w=\frac{-\sqrt{391}i-5}{-4}
w=\frac{-5±\sqrt{391}i}{-4} tenglamasini yeching, bunda ± manfiy. -5 dan i\sqrt{391} ni ayirish.
w=\frac{5+\sqrt{391}i}{4}
-5-i\sqrt{391} ni -4 ga bo'lish.
w=\frac{-\sqrt{391}i+5}{4} w=\frac{5+\sqrt{391}i}{4}
Tenglama yechildi.
5w-2w^{2}=52
5-2w ga w ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2w^{2}+5w=52
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2w^{2}+5w}{-2}=\frac{52}{-2}
Ikki tarafini -2 ga bo‘ling.
w^{2}+\frac{5}{-2}w=\frac{52}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
w^{2}-\frac{5}{2}w=\frac{52}{-2}
5 ni -2 ga bo'lish.
w^{2}-\frac{5}{2}w=-26
52 ni -2 ga bo'lish.
w^{2}-\frac{5}{2}w+\left(-\frac{5}{4}\right)^{2}=-26+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{4} olish uchun. Keyin, -\frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}-\frac{5}{2}w+\frac{25}{16}=-26+\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{4} kvadratini chiqarish.
w^{2}-\frac{5}{2}w+\frac{25}{16}=-\frac{391}{16}
-26 ni \frac{25}{16} ga qo'shish.
\left(w-\frac{5}{4}\right)^{2}=-\frac{391}{16}
w^{2}-\frac{5}{2}w+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{391}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w-\frac{5}{4}=\frac{\sqrt{391}i}{4} w-\frac{5}{4}=-\frac{\sqrt{391}i}{4}
Qisqartirish.
w=\frac{5+\sqrt{391}i}{4} w=\frac{-\sqrt{391}i+5}{4}
\frac{5}{4} ni tenglamaning ikkala tarafiga qo'shish.