Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

25+10a+a^{2}+a=8+a
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5+a\right)^{2} kengaytirilishi uchun ishlating.
25+11a+a^{2}=8+a
11a ni olish uchun 10a va a ni birlashtirish.
25+11a+a^{2}-8=a
Ikkala tarafdan 8 ni ayirish.
17+11a+a^{2}=a
17 olish uchun 25 dan 8 ni ayirish.
17+11a+a^{2}-a=0
Ikkala tarafdan a ni ayirish.
17+10a+a^{2}=0
10a ni olish uchun 11a va -a ni birlashtirish.
a^{2}+10a+17=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-10±\sqrt{10^{2}-4\times 17}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 10 ni b va 17 ni c bilan almashtiring.
a=\frac{-10±\sqrt{100-4\times 17}}{2}
10 kvadratini chiqarish.
a=\frac{-10±\sqrt{100-68}}{2}
-4 ni 17 marotabaga ko'paytirish.
a=\frac{-10±\sqrt{32}}{2}
100 ni -68 ga qo'shish.
a=\frac{-10±4\sqrt{2}}{2}
32 ning kvadrat ildizini chiqarish.
a=\frac{4\sqrt{2}-10}{2}
a=\frac{-10±4\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. -10 ni 4\sqrt{2} ga qo'shish.
a=2\sqrt{2}-5
-10+4\sqrt{2} ni 2 ga bo'lish.
a=\frac{-4\sqrt{2}-10}{2}
a=\frac{-10±4\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 4\sqrt{2} ni ayirish.
a=-2\sqrt{2}-5
-10-4\sqrt{2} ni 2 ga bo'lish.
a=2\sqrt{2}-5 a=-2\sqrt{2}-5
Tenglama yechildi.
25+10a+a^{2}+a=8+a
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5+a\right)^{2} kengaytirilishi uchun ishlating.
25+11a+a^{2}=8+a
11a ni olish uchun 10a va a ni birlashtirish.
25+11a+a^{2}-a=8
Ikkala tarafdan a ni ayirish.
25+10a+a^{2}=8
10a ni olish uchun 11a va -a ni birlashtirish.
10a+a^{2}=8-25
Ikkala tarafdan 25 ni ayirish.
10a+a^{2}=-17
-17 olish uchun 8 dan 25 ni ayirish.
a^{2}+10a=-17
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}+10a+5^{2}=-17+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+10a+25=-17+25
5 kvadratini chiqarish.
a^{2}+10a+25=8
-17 ni 25 ga qo'shish.
\left(a+5\right)^{2}=8
a^{2}+10a+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+5\right)^{2}}=\sqrt{8}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+5=2\sqrt{2} a+5=-2\sqrt{2}
Qisqartirish.
a=2\sqrt{2}-5 a=-2\sqrt{2}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.