m uchun yechish
m=\sqrt{565}+15\approx 38,769728648
m=15-\sqrt{565}\approx -8,769728648
Baham ko'rish
Klipbordga nusxa olish
800+60m-2m^{2}=120
40-m ga 20+2m ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
800+60m-2m^{2}-120=0
Ikkala tarafdan 120 ni ayirish.
680+60m-2m^{2}=0
680 olish uchun 800 dan 120 ni ayirish.
-2m^{2}+60m+680=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-60±\sqrt{60^{2}-4\left(-2\right)\times 680}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 60 ni b va 680 ni c bilan almashtiring.
m=\frac{-60±\sqrt{3600-4\left(-2\right)\times 680}}{2\left(-2\right)}
60 kvadratini chiqarish.
m=\frac{-60±\sqrt{3600+8\times 680}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
m=\frac{-60±\sqrt{3600+5440}}{2\left(-2\right)}
8 ni 680 marotabaga ko'paytirish.
m=\frac{-60±\sqrt{9040}}{2\left(-2\right)}
3600 ni 5440 ga qo'shish.
m=\frac{-60±4\sqrt{565}}{2\left(-2\right)}
9040 ning kvadrat ildizini chiqarish.
m=\frac{-60±4\sqrt{565}}{-4}
2 ni -2 marotabaga ko'paytirish.
m=\frac{4\sqrt{565}-60}{-4}
m=\frac{-60±4\sqrt{565}}{-4} tenglamasini yeching, bunda ± musbat. -60 ni 4\sqrt{565} ga qo'shish.
m=15-\sqrt{565}
-60+4\sqrt{565} ni -4 ga bo'lish.
m=\frac{-4\sqrt{565}-60}{-4}
m=\frac{-60±4\sqrt{565}}{-4} tenglamasini yeching, bunda ± manfiy. -60 dan 4\sqrt{565} ni ayirish.
m=\sqrt{565}+15
-60-4\sqrt{565} ni -4 ga bo'lish.
m=15-\sqrt{565} m=\sqrt{565}+15
Tenglama yechildi.
800+60m-2m^{2}=120
40-m ga 20+2m ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
60m-2m^{2}=120-800
Ikkala tarafdan 800 ni ayirish.
60m-2m^{2}=-680
-680 olish uchun 120 dan 800 ni ayirish.
-2m^{2}+60m=-680
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2m^{2}+60m}{-2}=-\frac{680}{-2}
Ikki tarafini -2 ga bo‘ling.
m^{2}+\frac{60}{-2}m=-\frac{680}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
m^{2}-30m=-\frac{680}{-2}
60 ni -2 ga bo'lish.
m^{2}-30m=340
-680 ni -2 ga bo'lish.
m^{2}-30m+\left(-15\right)^{2}=340+\left(-15\right)^{2}
-30 ni bo‘lish, x shartining koeffitsienti, 2 ga -15 olish uchun. Keyin, -15 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-30m+225=340+225
-15 kvadratini chiqarish.
m^{2}-30m+225=565
340 ni 225 ga qo'shish.
\left(m-15\right)^{2}=565
m^{2}-30m+225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-15\right)^{2}}=\sqrt{565}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-15=\sqrt{565} m-15=-\sqrt{565}
Qisqartirish.
m=\sqrt{565}+15 m=15-\sqrt{565}
15 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}