Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1600-320t+16t^{2}+\left(30-3t\right)^{2}=30
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(40-4t\right)^{2} kengaytirilishi uchun ishlating.
1600-320t+16t^{2}+900-180t+9t^{2}=30
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(30-3t\right)^{2} kengaytirilishi uchun ishlating.
2500-320t+16t^{2}-180t+9t^{2}=30
2500 olish uchun 1600 va 900'ni qo'shing.
2500-500t+16t^{2}+9t^{2}=30
-500t ni olish uchun -320t va -180t ni birlashtirish.
2500-500t+25t^{2}=30
25t^{2} ni olish uchun 16t^{2} va 9t^{2} ni birlashtirish.
2500-500t+25t^{2}-30=0
Ikkala tarafdan 30 ni ayirish.
2470-500t+25t^{2}=0
2470 olish uchun 2500 dan 30 ni ayirish.
25t^{2}-500t+2470=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-500\right)±\sqrt{\left(-500\right)^{2}-4\times 25\times 2470}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -500 ni b va 2470 ni c bilan almashtiring.
t=\frac{-\left(-500\right)±\sqrt{250000-4\times 25\times 2470}}{2\times 25}
-500 kvadratini chiqarish.
t=\frac{-\left(-500\right)±\sqrt{250000-100\times 2470}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
t=\frac{-\left(-500\right)±\sqrt{250000-247000}}{2\times 25}
-100 ni 2470 marotabaga ko'paytirish.
t=\frac{-\left(-500\right)±\sqrt{3000}}{2\times 25}
250000 ni -247000 ga qo'shish.
t=\frac{-\left(-500\right)±10\sqrt{30}}{2\times 25}
3000 ning kvadrat ildizini chiqarish.
t=\frac{500±10\sqrt{30}}{2\times 25}
-500 ning teskarisi 500 ga teng.
t=\frac{500±10\sqrt{30}}{50}
2 ni 25 marotabaga ko'paytirish.
t=\frac{10\sqrt{30}+500}{50}
t=\frac{500±10\sqrt{30}}{50} tenglamasini yeching, bunda ± musbat. 500 ni 10\sqrt{30} ga qo'shish.
t=\frac{\sqrt{30}}{5}+10
500+10\sqrt{30} ni 50 ga bo'lish.
t=\frac{500-10\sqrt{30}}{50}
t=\frac{500±10\sqrt{30}}{50} tenglamasini yeching, bunda ± manfiy. 500 dan 10\sqrt{30} ni ayirish.
t=-\frac{\sqrt{30}}{5}+10
500-10\sqrt{30} ni 50 ga bo'lish.
t=\frac{\sqrt{30}}{5}+10 t=-\frac{\sqrt{30}}{5}+10
Tenglama yechildi.
1600-320t+16t^{2}+\left(30-3t\right)^{2}=30
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(40-4t\right)^{2} kengaytirilishi uchun ishlating.
1600-320t+16t^{2}+900-180t+9t^{2}=30
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(30-3t\right)^{2} kengaytirilishi uchun ishlating.
2500-320t+16t^{2}-180t+9t^{2}=30
2500 olish uchun 1600 va 900'ni qo'shing.
2500-500t+16t^{2}+9t^{2}=30
-500t ni olish uchun -320t va -180t ni birlashtirish.
2500-500t+25t^{2}=30
25t^{2} ni olish uchun 16t^{2} va 9t^{2} ni birlashtirish.
-500t+25t^{2}=30-2500
Ikkala tarafdan 2500 ni ayirish.
-500t+25t^{2}=-2470
-2470 olish uchun 30 dan 2500 ni ayirish.
25t^{2}-500t=-2470
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{25t^{2}-500t}{25}=-\frac{2470}{25}
Ikki tarafini 25 ga bo‘ling.
t^{2}+\left(-\frac{500}{25}\right)t=-\frac{2470}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
t^{2}-20t=-\frac{2470}{25}
-500 ni 25 ga bo'lish.
t^{2}-20t=-\frac{494}{5}
\frac{-2470}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-20t+\left(-10\right)^{2}=-\frac{494}{5}+\left(-10\right)^{2}
-20 ni bo‘lish, x shartining koeffitsienti, 2 ga -10 olish uchun. Keyin, -10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-20t+100=-\frac{494}{5}+100
-10 kvadratini chiqarish.
t^{2}-20t+100=\frac{6}{5}
-\frac{494}{5} ni 100 ga qo'shish.
\left(t-10\right)^{2}=\frac{6}{5}
t^{2}-20t+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-10\right)^{2}}=\sqrt{\frac{6}{5}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-10=\frac{\sqrt{30}}{5} t-10=-\frac{\sqrt{30}}{5}
Qisqartirish.
t=\frac{\sqrt{30}}{5}+10 t=-\frac{\sqrt{30}}{5}+10
10 ni tenglamaning ikkala tarafiga qo'shish.