x uchun yechish
x=2\sqrt{1070}-40\approx 25,421708935
x=-2\sqrt{1070}-40\approx -105,421708935
Grafik
Baham ko'rish
Klipbordga nusxa olish
120x+2400+\frac{3}{2}x^{2}=6420
40+x ga \frac{3}{2}x+60 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
120x+2400+\frac{3}{2}x^{2}-6420=0
Ikkala tarafdan 6420 ni ayirish.
120x-4020+\frac{3}{2}x^{2}=0
-4020 olish uchun 2400 dan 6420 ni ayirish.
\frac{3}{2}x^{2}+120x-4020=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-120±\sqrt{120^{2}-4\times \frac{3}{2}\left(-4020\right)}}{2\times \frac{3}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{3}{2} ni a, 120 ni b va -4020 ni c bilan almashtiring.
x=\frac{-120±\sqrt{14400-4\times \frac{3}{2}\left(-4020\right)}}{2\times \frac{3}{2}}
120 kvadratini chiqarish.
x=\frac{-120±\sqrt{14400-6\left(-4020\right)}}{2\times \frac{3}{2}}
-4 ni \frac{3}{2} marotabaga ko'paytirish.
x=\frac{-120±\sqrt{14400+24120}}{2\times \frac{3}{2}}
-6 ni -4020 marotabaga ko'paytirish.
x=\frac{-120±\sqrt{38520}}{2\times \frac{3}{2}}
14400 ni 24120 ga qo'shish.
x=\frac{-120±6\sqrt{1070}}{2\times \frac{3}{2}}
38520 ning kvadrat ildizini chiqarish.
x=\frac{-120±6\sqrt{1070}}{3}
2 ni \frac{3}{2} marotabaga ko'paytirish.
x=\frac{6\sqrt{1070}-120}{3}
x=\frac{-120±6\sqrt{1070}}{3} tenglamasini yeching, bunda ± musbat. -120 ni 6\sqrt{1070} ga qo'shish.
x=2\sqrt{1070}-40
-120+6\sqrt{1070} ni 3 ga bo'lish.
x=\frac{-6\sqrt{1070}-120}{3}
x=\frac{-120±6\sqrt{1070}}{3} tenglamasini yeching, bunda ± manfiy. -120 dan 6\sqrt{1070} ni ayirish.
x=-2\sqrt{1070}-40
-120-6\sqrt{1070} ni 3 ga bo'lish.
x=2\sqrt{1070}-40 x=-2\sqrt{1070}-40
Tenglama yechildi.
120x+2400+\frac{3}{2}x^{2}=6420
40+x ga \frac{3}{2}x+60 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
120x+\frac{3}{2}x^{2}=6420-2400
Ikkala tarafdan 2400 ni ayirish.
120x+\frac{3}{2}x^{2}=4020
4020 olish uchun 6420 dan 2400 ni ayirish.
\frac{3}{2}x^{2}+120x=4020
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{3}{2}x^{2}+120x}{\frac{3}{2}}=\frac{4020}{\frac{3}{2}}
Tenglamaning ikki tarafini \frac{3}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\frac{120}{\frac{3}{2}}x=\frac{4020}{\frac{3}{2}}
\frac{3}{2} ga bo'lish \frac{3}{2} ga ko'paytirishni bekor qiladi.
x^{2}+80x=\frac{4020}{\frac{3}{2}}
120 ni \frac{3}{2} ga bo'lish 120 ga k'paytirish \frac{3}{2} ga qaytarish.
x^{2}+80x=2680
4020 ni \frac{3}{2} ga bo'lish 4020 ga k'paytirish \frac{3}{2} ga qaytarish.
x^{2}+80x+40^{2}=2680+40^{2}
80 ni bo‘lish, x shartining koeffitsienti, 2 ga 40 olish uchun. Keyin, 40 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+80x+1600=2680+1600
40 kvadratini chiqarish.
x^{2}+80x+1600=4280
2680 ni 1600 ga qo'shish.
\left(x+40\right)^{2}=4280
x^{2}+80x+1600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+40\right)^{2}}=\sqrt{4280}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+40=2\sqrt{1070} x+40=-2\sqrt{1070}
Qisqartirish.
x=2\sqrt{1070}-40 x=-2\sqrt{1070}-40
Tenglamaning ikkala tarafidan 40 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}