Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

16x^{2}-8x+1=\left(x-1\right)\left(x+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4x-1\right)^{2} kengaytirilishi uchun ishlating.
16x^{2}-8x+1=x^{2}-1
Hisoblang: \left(x-1\right)\left(x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
16x^{2}-8x+1-x^{2}=-1
Ikkala tarafdan x^{2} ni ayirish.
15x^{2}-8x+1=-1
15x^{2} ni olish uchun 16x^{2} va -x^{2} ni birlashtirish.
15x^{2}-8x+1+1=0
1 ni ikki tarafga qo’shing.
15x^{2}-8x+2=0
2 olish uchun 1 va 1'ni qo'shing.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15\times 2}}{2\times 15}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 15 ni a, -8 ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15\times 2}}{2\times 15}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-60\times 2}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-120}}{2\times 15}
-60 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-56}}{2\times 15}
64 ni -120 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{14}i}{2\times 15}
-56 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{14}i}{2\times 15}
-8 ning teskarisi 8 ga teng.
x=\frac{8±2\sqrt{14}i}{30}
2 ni 15 marotabaga ko'paytirish.
x=\frac{8+2\sqrt{14}i}{30}
x=\frac{8±2\sqrt{14}i}{30} tenglamasini yeching, bunda ± musbat. 8 ni 2i\sqrt{14} ga qo'shish.
x=\frac{4+\sqrt{14}i}{15}
8+2i\sqrt{14} ni 30 ga bo'lish.
x=\frac{-2\sqrt{14}i+8}{30}
x=\frac{8±2\sqrt{14}i}{30} tenglamasini yeching, bunda ± manfiy. 8 dan 2i\sqrt{14} ni ayirish.
x=\frac{-\sqrt{14}i+4}{15}
8-2i\sqrt{14} ni 30 ga bo'lish.
x=\frac{4+\sqrt{14}i}{15} x=\frac{-\sqrt{14}i+4}{15}
Tenglama yechildi.
16x^{2}-8x+1=\left(x-1\right)\left(x+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4x-1\right)^{2} kengaytirilishi uchun ishlating.
16x^{2}-8x+1=x^{2}-1
Hisoblang: \left(x-1\right)\left(x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
16x^{2}-8x+1-x^{2}=-1
Ikkala tarafdan x^{2} ni ayirish.
15x^{2}-8x+1=-1
15x^{2} ni olish uchun 16x^{2} va -x^{2} ni birlashtirish.
15x^{2}-8x=-1-1
Ikkala tarafdan 1 ni ayirish.
15x^{2}-8x=-2
-2 olish uchun -1 dan 1 ni ayirish.
\frac{15x^{2}-8x}{15}=-\frac{2}{15}
Ikki tarafini 15 ga bo‘ling.
x^{2}-\frac{8}{15}x=-\frac{2}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{8}{15}x+\left(-\frac{4}{15}\right)^{2}=-\frac{2}{15}+\left(-\frac{4}{15}\right)^{2}
-\frac{8}{15} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4}{15} olish uchun. Keyin, -\frac{4}{15} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{8}{15}x+\frac{16}{225}=-\frac{2}{15}+\frac{16}{225}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4}{15} kvadratini chiqarish.
x^{2}-\frac{8}{15}x+\frac{16}{225}=-\frac{14}{225}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{15} ni \frac{16}{225} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{4}{15}\right)^{2}=-\frac{14}{225}
x^{2}-\frac{8}{15}x+\frac{16}{225} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{4}{15}\right)^{2}}=\sqrt{-\frac{14}{225}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{4}{15}=\frac{\sqrt{14}i}{15} x-\frac{4}{15}=-\frac{\sqrt{14}i}{15}
Qisqartirish.
x=\frac{4+\sqrt{14}i}{15} x=\frac{-\sqrt{14}i+4}{15}
\frac{4}{15} ni tenglamaning ikkala tarafiga qo'shish.