x uchun yechish
x = -\frac{11}{8} = -1\frac{3}{8} = -1,375
x = -\frac{3}{2} = -1\frac{1}{2} = -1,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
16x^{2}+48x+36=2x+3
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4x+6\right)^{2} kengaytirilishi uchun ishlating.
16x^{2}+48x+36-2x=3
Ikkala tarafdan 2x ni ayirish.
16x^{2}+46x+36=3
46x ni olish uchun 48x va -2x ni birlashtirish.
16x^{2}+46x+36-3=0
Ikkala tarafdan 3 ni ayirish.
16x^{2}+46x+33=0
33 olish uchun 36 dan 3 ni ayirish.
a+b=46 ab=16\times 33=528
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 16x^{2}+ax+bx+33 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,528 2,264 3,176 4,132 6,88 8,66 11,48 12,44 16,33 22,24
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 528-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+528=529 2+264=266 3+176=179 4+132=136 6+88=94 8+66=74 11+48=59 12+44=56 16+33=49 22+24=46
Har bir juftlik yigʻindisini hisoblang.
a=22 b=24
Yechim – 46 yigʻindisini beruvchi juftlik.
\left(16x^{2}+22x\right)+\left(24x+33\right)
16x^{2}+46x+33 ni \left(16x^{2}+22x\right)+\left(24x+33\right) sifatida qaytadan yozish.
2x\left(8x+11\right)+3\left(8x+11\right)
Birinchi guruhda 2x ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(8x+11\right)\left(2x+3\right)
Distributiv funktsiyasidan foydalangan holda 8x+11 umumiy terminini chiqaring.
x=-\frac{11}{8} x=-\frac{3}{2}
Tenglamani yechish uchun 8x+11=0 va 2x+3=0 ni yeching.
16x^{2}+48x+36=2x+3
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4x+6\right)^{2} kengaytirilishi uchun ishlating.
16x^{2}+48x+36-2x=3
Ikkala tarafdan 2x ni ayirish.
16x^{2}+46x+36=3
46x ni olish uchun 48x va -2x ni birlashtirish.
16x^{2}+46x+36-3=0
Ikkala tarafdan 3 ni ayirish.
16x^{2}+46x+33=0
33 olish uchun 36 dan 3 ni ayirish.
x=\frac{-46±\sqrt{46^{2}-4\times 16\times 33}}{2\times 16}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 16 ni a, 46 ni b va 33 ni c bilan almashtiring.
x=\frac{-46±\sqrt{2116-4\times 16\times 33}}{2\times 16}
46 kvadratini chiqarish.
x=\frac{-46±\sqrt{2116-64\times 33}}{2\times 16}
-4 ni 16 marotabaga ko'paytirish.
x=\frac{-46±\sqrt{2116-2112}}{2\times 16}
-64 ni 33 marotabaga ko'paytirish.
x=\frac{-46±\sqrt{4}}{2\times 16}
2116 ni -2112 ga qo'shish.
x=\frac{-46±2}{2\times 16}
4 ning kvadrat ildizini chiqarish.
x=\frac{-46±2}{32}
2 ni 16 marotabaga ko'paytirish.
x=-\frac{44}{32}
x=\frac{-46±2}{32} tenglamasini yeching, bunda ± musbat. -46 ni 2 ga qo'shish.
x=-\frac{11}{8}
\frac{-44}{32} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{48}{32}
x=\frac{-46±2}{32} tenglamasini yeching, bunda ± manfiy. -46 dan 2 ni ayirish.
x=-\frac{3}{2}
\frac{-48}{32} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{11}{8} x=-\frac{3}{2}
Tenglama yechildi.
16x^{2}+48x+36=2x+3
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4x+6\right)^{2} kengaytirilishi uchun ishlating.
16x^{2}+48x+36-2x=3
Ikkala tarafdan 2x ni ayirish.
16x^{2}+46x+36=3
46x ni olish uchun 48x va -2x ni birlashtirish.
16x^{2}+46x=3-36
Ikkala tarafdan 36 ni ayirish.
16x^{2}+46x=-33
-33 olish uchun 3 dan 36 ni ayirish.
\frac{16x^{2}+46x}{16}=-\frac{33}{16}
Ikki tarafini 16 ga bo‘ling.
x^{2}+\frac{46}{16}x=-\frac{33}{16}
16 ga bo'lish 16 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{23}{8}x=-\frac{33}{16}
\frac{46}{16} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{23}{8}x+\left(\frac{23}{16}\right)^{2}=-\frac{33}{16}+\left(\frac{23}{16}\right)^{2}
\frac{23}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{23}{16} olish uchun. Keyin, \frac{23}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{23}{8}x+\frac{529}{256}=-\frac{33}{16}+\frac{529}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{23}{16} kvadratini chiqarish.
x^{2}+\frac{23}{8}x+\frac{529}{256}=\frac{1}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{33}{16} ni \frac{529}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{23}{16}\right)^{2}=\frac{1}{256}
x^{2}+\frac{23}{8}x+\frac{529}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{23}{16}\right)^{2}}=\sqrt{\frac{1}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{23}{16}=\frac{1}{16} x+\frac{23}{16}=-\frac{1}{16}
Qisqartirish.
x=-\frac{11}{8} x=-\frac{3}{2}
Tenglamaning ikkala tarafidan \frac{23}{16} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}