x uchun yechish
x=-\frac{13}{28}\approx -0,464285714
x=-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
28x^{2}+41x+15=2
4x+3 ga 7x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
28x^{2}+41x+15-2=0
Ikkala tarafdan 2 ni ayirish.
28x^{2}+41x+13=0
13 olish uchun 15 dan 2 ni ayirish.
x=\frac{-41±\sqrt{41^{2}-4\times 28\times 13}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, 41 ni b va 13 ni c bilan almashtiring.
x=\frac{-41±\sqrt{1681-4\times 28\times 13}}{2\times 28}
41 kvadratini chiqarish.
x=\frac{-41±\sqrt{1681-112\times 13}}{2\times 28}
-4 ni 28 marotabaga ko'paytirish.
x=\frac{-41±\sqrt{1681-1456}}{2\times 28}
-112 ni 13 marotabaga ko'paytirish.
x=\frac{-41±\sqrt{225}}{2\times 28}
1681 ni -1456 ga qo'shish.
x=\frac{-41±15}{2\times 28}
225 ning kvadrat ildizini chiqarish.
x=\frac{-41±15}{56}
2 ni 28 marotabaga ko'paytirish.
x=-\frac{26}{56}
x=\frac{-41±15}{56} tenglamasini yeching, bunda ± musbat. -41 ni 15 ga qo'shish.
x=-\frac{13}{28}
\frac{-26}{56} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{56}{56}
x=\frac{-41±15}{56} tenglamasini yeching, bunda ± manfiy. -41 dan 15 ni ayirish.
x=-1
-56 ni 56 ga bo'lish.
x=-\frac{13}{28} x=-1
Tenglama yechildi.
28x^{2}+41x+15=2
4x+3 ga 7x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
28x^{2}+41x=2-15
Ikkala tarafdan 15 ni ayirish.
28x^{2}+41x=-13
-13 olish uchun 2 dan 15 ni ayirish.
\frac{28x^{2}+41x}{28}=-\frac{13}{28}
Ikki tarafini 28 ga bo‘ling.
x^{2}+\frac{41}{28}x=-\frac{13}{28}
28 ga bo'lish 28 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{41}{28}x+\left(\frac{41}{56}\right)^{2}=-\frac{13}{28}+\left(\frac{41}{56}\right)^{2}
\frac{41}{28} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{41}{56} olish uchun. Keyin, \frac{41}{56} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{41}{28}x+\frac{1681}{3136}=-\frac{13}{28}+\frac{1681}{3136}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{41}{56} kvadratini chiqarish.
x^{2}+\frac{41}{28}x+\frac{1681}{3136}=\frac{225}{3136}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{13}{28} ni \frac{1681}{3136} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{41}{56}\right)^{2}=\frac{225}{3136}
x^{2}+\frac{41}{28}x+\frac{1681}{3136} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{41}{56}\right)^{2}}=\sqrt{\frac{225}{3136}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{41}{56}=\frac{15}{56} x+\frac{41}{56}=-\frac{15}{56}
Qisqartirish.
x=-\frac{13}{28} x=-1
Tenglamaning ikkala tarafidan \frac{41}{56} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}