k uchun yechish
k=\sqrt{3}\approx 1,732050808
k=-\sqrt{3}\approx -1,732050808
Baham ko'rish
Klipbordga nusxa olish
4^{2}k^{2}-4\times 6\left(k^{2}-1\right)=0
\left(4k\right)^{2} ni kengaytirish.
16k^{2}-4\times 6\left(k^{2}-1\right)=0
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
16k^{2}-24\left(k^{2}-1\right)=0
24 hosil qilish uchun 4 va 6 ni ko'paytirish.
16k^{2}-24k^{2}+24=0
-24 ga k^{2}-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-8k^{2}+24=0
-8k^{2} ni olish uchun 16k^{2} va -24k^{2} ni birlashtirish.
-8k^{2}=-24
Ikkala tarafdan 24 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
k^{2}=\frac{-24}{-8}
Ikki tarafini -8 ga bo‘ling.
k^{2}=3
3 ni olish uchun -24 ni -8 ga bo‘ling.
k=\sqrt{3} k=-\sqrt{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4^{2}k^{2}-4\times 6\left(k^{2}-1\right)=0
\left(4k\right)^{2} ni kengaytirish.
16k^{2}-4\times 6\left(k^{2}-1\right)=0
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
16k^{2}-24\left(k^{2}-1\right)=0
24 hosil qilish uchun 4 va 6 ni ko'paytirish.
16k^{2}-24k^{2}+24=0
-24 ga k^{2}-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-8k^{2}+24=0
-8k^{2} ni olish uchun 16k^{2} va -24k^{2} ni birlashtirish.
k=\frac{0±\sqrt{0^{2}-4\left(-8\right)\times 24}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, 0 ni b va 24 ni c bilan almashtiring.
k=\frac{0±\sqrt{-4\left(-8\right)\times 24}}{2\left(-8\right)}
0 kvadratini chiqarish.
k=\frac{0±\sqrt{32\times 24}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
k=\frac{0±\sqrt{768}}{2\left(-8\right)}
32 ni 24 marotabaga ko'paytirish.
k=\frac{0±16\sqrt{3}}{2\left(-8\right)}
768 ning kvadrat ildizini chiqarish.
k=\frac{0±16\sqrt{3}}{-16}
2 ni -8 marotabaga ko'paytirish.
k=-\sqrt{3}
k=\frac{0±16\sqrt{3}}{-16} tenglamasini yeching, bunda ± musbat.
k=\sqrt{3}
k=\frac{0±16\sqrt{3}}{-16} tenglamasini yeching, bunda ± manfiy.
k=-\sqrt{3} k=\sqrt{3}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}