Baholash
2b\left(2a+3b\right)
Kengaytirish
4ab+6b^{2}
Baham ko'rish
Klipbordga nusxa olish
\left(4a\right)^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Hisoblang: \left(4a-5b\right)\left(4a+5b\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
\left(4a\right)^{2} ni kengaytirish.
16a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
16a^{2}-5^{2}b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
\left(5b\right)^{2} ni kengaytirish.
16a^{2}-25b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
16a^{2}-25b^{2}-\left(16a^{2}-4ab-6b^{2}\right)+\left(-5b\right)^{2}
4a+2b ga 4a-3b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
16a^{2}-25b^{2}-16a^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
16a^{2}-4ab-6b^{2} teskarisini topish uchun har birining teskarisini toping.
-25b^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
0 ni olish uchun 16a^{2} va -16a^{2} ni birlashtirish.
-19b^{2}+4ab+\left(-5b\right)^{2}
-19b^{2} ni olish uchun -25b^{2} va 6b^{2} ni birlashtirish.
-19b^{2}+4ab+\left(-5\right)^{2}b^{2}
\left(-5b\right)^{2} ni kengaytirish.
-19b^{2}+4ab+25b^{2}
2 daraja ko‘rsatkichini -5 ga hisoblang va 25 ni qiymatni oling.
6b^{2}+4ab
6b^{2} ni olish uchun -19b^{2} va 25b^{2} ni birlashtirish.
\left(4a\right)^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Hisoblang: \left(4a-5b\right)\left(4a+5b\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
\left(4a\right)^{2} ni kengaytirish.
16a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
16a^{2}-5^{2}b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
\left(5b\right)^{2} ni kengaytirish.
16a^{2}-25b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
16a^{2}-25b^{2}-\left(16a^{2}-4ab-6b^{2}\right)+\left(-5b\right)^{2}
4a+2b ga 4a-3b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
16a^{2}-25b^{2}-16a^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
16a^{2}-4ab-6b^{2} teskarisini topish uchun har birining teskarisini toping.
-25b^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
0 ni olish uchun 16a^{2} va -16a^{2} ni birlashtirish.
-19b^{2}+4ab+\left(-5b\right)^{2}
-19b^{2} ni olish uchun -25b^{2} va 6b^{2} ni birlashtirish.
-19b^{2}+4ab+\left(-5\right)^{2}b^{2}
\left(-5b\right)^{2} ni kengaytirish.
-19b^{2}+4ab+25b^{2}
2 daraja ko‘rsatkichini -5 ga hisoblang va 25 ni qiymatni oling.
6b^{2}+4ab
6b^{2} ni olish uchun -19b^{2} va 25b^{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}