Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4\left(4\sqrt{3}+\frac{x\sqrt{3}}{2}\right)^{2}+x^{2}=624
Tenglamaning ikkala tarafini 4 ga ko'paytirish.
4\left(16\left(\sqrt{3}\right)^{2}+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4\sqrt{3}+\frac{x\sqrt{3}}{2}\right)^{2} kengaytirilishi uchun ishlating.
4\left(16\times 3+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
\sqrt{3} kvadrati – 3.
4\left(48+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
4\left(48+4x\sqrt{3}\sqrt{3}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
8 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.
4\left(48+4x\sqrt{3}\sqrt{3}+\frac{\left(x\sqrt{3}\right)^{2}}{2^{2}}\right)+x^{2}=624
\frac{x\sqrt{3}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
4\left(\frac{48\times 2^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3}+\frac{\left(x\sqrt{3}\right)^{2}}{2^{2}}\right)+x^{2}=624
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 48 ni \frac{2^{2}}{2^{2}} marotabaga ko'paytirish.
4\left(\frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3}\right)+x^{2}=624
\frac{48\times 2^{2}}{2^{2}} va \frac{\left(x\sqrt{3}\right)^{2}}{2^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
4\times \frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4 ga \frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4\times \frac{48\times 4+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\times \frac{192+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
192 hosil qilish uchun 48 va 4 ni ko'paytirish.
4\times \frac{192+x^{2}\left(\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
\left(x\sqrt{3}\right)^{2} ni kengaytirish.
4\times \frac{192+x^{2}\times 3}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
\sqrt{3} kvadrati – 3.
4\times \frac{192+x^{2}\times 3}{4}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{4\left(192+x^{2}\times 3\right)}{4}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4\times \frac{192+x^{2}\times 3}{4} ni yagona kasrga aylantiring.
192+x^{2}\times 3+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4 va 4 ni qisqartiring.
192+x^{2}\times 3+16\times 3x+x^{2}=624
\sqrt{3} kvadrati – 3.
192+x^{2}\times 3+48x+x^{2}=624
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
192+4x^{2}+48x=624
4x^{2} ni olish uchun x^{2}\times 3 va x^{2} ni birlashtirish.
192+4x^{2}+48x-624=0
Ikkala tarafdan 624 ni ayirish.
-432+4x^{2}+48x=0
-432 olish uchun 192 dan 624 ni ayirish.
-108+x^{2}+12x=0
Ikki tarafini 4 ga bo‘ling.
x^{2}+12x-108=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=12 ab=1\left(-108\right)=-108
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-108 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,108 -2,54 -3,36 -4,27 -6,18 -9,12
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -108-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+108=107 -2+54=52 -3+36=33 -4+27=23 -6+18=12 -9+12=3
Har bir juftlik yigʻindisini hisoblang.
a=-6 b=18
Yechim – 12 yigʻindisini beruvchi juftlik.
\left(x^{2}-6x\right)+\left(18x-108\right)
x^{2}+12x-108 ni \left(x^{2}-6x\right)+\left(18x-108\right) sifatida qaytadan yozish.
x\left(x-6\right)+18\left(x-6\right)
Birinchi guruhda x ni va ikkinchi guruhda 18 ni faktordan chiqaring.
\left(x-6\right)\left(x+18\right)
Distributiv funktsiyasidan foydalangan holda x-6 umumiy terminini chiqaring.
x=6 x=-18
Tenglamani yechish uchun x-6=0 va x+18=0 ni yeching.
4\left(4\sqrt{3}+\frac{x\sqrt{3}}{2}\right)^{2}+x^{2}=624
Tenglamaning ikkala tarafini 4 ga ko'paytirish.
4\left(16\left(\sqrt{3}\right)^{2}+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4\sqrt{3}+\frac{x\sqrt{3}}{2}\right)^{2} kengaytirilishi uchun ishlating.
4\left(16\times 3+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
\sqrt{3} kvadrati – 3.
4\left(48+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
4\left(48+4x\sqrt{3}\sqrt{3}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
8 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.
4\left(48+4x\sqrt{3}\sqrt{3}+\frac{\left(x\sqrt{3}\right)^{2}}{2^{2}}\right)+x^{2}=624
\frac{x\sqrt{3}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
4\left(\frac{48\times 2^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3}+\frac{\left(x\sqrt{3}\right)^{2}}{2^{2}}\right)+x^{2}=624
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 48 ni \frac{2^{2}}{2^{2}} marotabaga ko'paytirish.
4\left(\frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3}\right)+x^{2}=624
\frac{48\times 2^{2}}{2^{2}} va \frac{\left(x\sqrt{3}\right)^{2}}{2^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
4\times \frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4 ga \frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4\times \frac{48\times 4+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\times \frac{192+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
192 hosil qilish uchun 48 va 4 ni ko'paytirish.
4\times \frac{192+x^{2}\left(\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
\left(x\sqrt{3}\right)^{2} ni kengaytirish.
4\times \frac{192+x^{2}\times 3}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
\sqrt{3} kvadrati – 3.
4\times \frac{192+x^{2}\times 3}{4}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{4\left(192+x^{2}\times 3\right)}{4}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4\times \frac{192+x^{2}\times 3}{4} ni yagona kasrga aylantiring.
192+x^{2}\times 3+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4 va 4 ni qisqartiring.
192+x^{2}\times 3+16\times 3x+x^{2}=624
\sqrt{3} kvadrati – 3.
192+x^{2}\times 3+48x+x^{2}=624
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
192+4x^{2}+48x=624
4x^{2} ni olish uchun x^{2}\times 3 va x^{2} ni birlashtirish.
192+4x^{2}+48x-624=0
Ikkala tarafdan 624 ni ayirish.
-432+4x^{2}+48x=0
-432 olish uchun 192 dan 624 ni ayirish.
4x^{2}+48x-432=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-48±\sqrt{48^{2}-4\times 4\left(-432\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 48 ni b va -432 ni c bilan almashtiring.
x=\frac{-48±\sqrt{2304-4\times 4\left(-432\right)}}{2\times 4}
48 kvadratini chiqarish.
x=\frac{-48±\sqrt{2304-16\left(-432\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-48±\sqrt{2304+6912}}{2\times 4}
-16 ni -432 marotabaga ko'paytirish.
x=\frac{-48±\sqrt{9216}}{2\times 4}
2304 ni 6912 ga qo'shish.
x=\frac{-48±96}{2\times 4}
9216 ning kvadrat ildizini chiqarish.
x=\frac{-48±96}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{48}{8}
x=\frac{-48±96}{8} tenglamasini yeching, bunda ± musbat. -48 ni 96 ga qo'shish.
x=6
48 ni 8 ga bo'lish.
x=-\frac{144}{8}
x=\frac{-48±96}{8} tenglamasini yeching, bunda ± manfiy. -48 dan 96 ni ayirish.
x=-18
-144 ni 8 ga bo'lish.
x=6 x=-18
Tenglama yechildi.
4\left(4\sqrt{3}+\frac{x\sqrt{3}}{2}\right)^{2}+x^{2}=624
Tenglamaning ikkala tarafini 4 ga ko'paytirish.
4\left(16\left(\sqrt{3}\right)^{2}+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4\sqrt{3}+\frac{x\sqrt{3}}{2}\right)^{2} kengaytirilishi uchun ishlating.
4\left(16\times 3+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
\sqrt{3} kvadrati – 3.
4\left(48+8\sqrt{3}\times \frac{x\sqrt{3}}{2}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
4\left(48+4x\sqrt{3}\sqrt{3}+\left(\frac{x\sqrt{3}}{2}\right)^{2}\right)+x^{2}=624
8 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.
4\left(48+4x\sqrt{3}\sqrt{3}+\frac{\left(x\sqrt{3}\right)^{2}}{2^{2}}\right)+x^{2}=624
\frac{x\sqrt{3}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
4\left(\frac{48\times 2^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3}+\frac{\left(x\sqrt{3}\right)^{2}}{2^{2}}\right)+x^{2}=624
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 48 ni \frac{2^{2}}{2^{2}} marotabaga ko'paytirish.
4\left(\frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3}\right)+x^{2}=624
\frac{48\times 2^{2}}{2^{2}} va \frac{\left(x\sqrt{3}\right)^{2}}{2^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
4\times \frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4 ga \frac{48\times 2^{2}+\left(x\sqrt{3}\right)^{2}}{2^{2}}+4x\sqrt{3}\sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4\times \frac{48\times 4+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\times \frac{192+\left(x\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
192 hosil qilish uchun 48 va 4 ni ko'paytirish.
4\times \frac{192+x^{2}\left(\sqrt{3}\right)^{2}}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
\left(x\sqrt{3}\right)^{2} ni kengaytirish.
4\times \frac{192+x^{2}\times 3}{2^{2}}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
\sqrt{3} kvadrati – 3.
4\times \frac{192+x^{2}\times 3}{4}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{4\left(192+x^{2}\times 3\right)}{4}+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4\times \frac{192+x^{2}\times 3}{4} ni yagona kasrga aylantiring.
192+x^{2}\times 3+16\left(\sqrt{3}\right)^{2}x+x^{2}=624
4 va 4 ni qisqartiring.
192+x^{2}\times 3+16\times 3x+x^{2}=624
\sqrt{3} kvadrati – 3.
192+x^{2}\times 3+48x+x^{2}=624
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
192+4x^{2}+48x=624
4x^{2} ni olish uchun x^{2}\times 3 va x^{2} ni birlashtirish.
4x^{2}+48x=624-192
Ikkala tarafdan 192 ni ayirish.
4x^{2}+48x=432
432 olish uchun 624 dan 192 ni ayirish.
\frac{4x^{2}+48x}{4}=\frac{432}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{48}{4}x=\frac{432}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+12x=\frac{432}{4}
48 ni 4 ga bo'lish.
x^{2}+12x=108
432 ni 4 ga bo'lish.
x^{2}+12x+6^{2}=108+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+12x+36=108+36
6 kvadratini chiqarish.
x^{2}+12x+36=144
108 ni 36 ga qo'shish.
\left(x+6\right)^{2}=144
x^{2}+12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+6\right)^{2}}=\sqrt{144}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+6=12 x+6=-12
Qisqartirish.
x=6 x=-18
Tenglamaning ikkala tarafidan 6 ni ayirish.