x uchun yechish
x=\frac{\sqrt{130}}{2}+18\approx 23,700877125
x=-\frac{\sqrt{130}}{2}+18\approx 12,299122875
Grafik
Baham ko'rish
Klipbordga nusxa olish
640-72x+2x^{2}=57
32-2x ga 20-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
640-72x+2x^{2}-57=0
Ikkala tarafdan 57 ni ayirish.
583-72x+2x^{2}=0
583 olish uchun 640 dan 57 ni ayirish.
2x^{2}-72x+583=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 2\times 583}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -72 ni b va 583 ni c bilan almashtiring.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 2\times 583}}{2\times 2}
-72 kvadratini chiqarish.
x=\frac{-\left(-72\right)±\sqrt{5184-8\times 583}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-72\right)±\sqrt{5184-4664}}{2\times 2}
-8 ni 583 marotabaga ko'paytirish.
x=\frac{-\left(-72\right)±\sqrt{520}}{2\times 2}
5184 ni -4664 ga qo'shish.
x=\frac{-\left(-72\right)±2\sqrt{130}}{2\times 2}
520 ning kvadrat ildizini chiqarish.
x=\frac{72±2\sqrt{130}}{2\times 2}
-72 ning teskarisi 72 ga teng.
x=\frac{72±2\sqrt{130}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{130}+72}{4}
x=\frac{72±2\sqrt{130}}{4} tenglamasini yeching, bunda ± musbat. 72 ni 2\sqrt{130} ga qo'shish.
x=\frac{\sqrt{130}}{2}+18
72+2\sqrt{130} ni 4 ga bo'lish.
x=\frac{72-2\sqrt{130}}{4}
x=\frac{72±2\sqrt{130}}{4} tenglamasini yeching, bunda ± manfiy. 72 dan 2\sqrt{130} ni ayirish.
x=-\frac{\sqrt{130}}{2}+18
72-2\sqrt{130} ni 4 ga bo'lish.
x=\frac{\sqrt{130}}{2}+18 x=-\frac{\sqrt{130}}{2}+18
Tenglama yechildi.
640-72x+2x^{2}=57
32-2x ga 20-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-72x+2x^{2}=57-640
Ikkala tarafdan 640 ni ayirish.
-72x+2x^{2}=-583
-583 olish uchun 57 dan 640 ni ayirish.
2x^{2}-72x=-583
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}-72x}{2}=-\frac{583}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{72}{2}\right)x=-\frac{583}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-36x=-\frac{583}{2}
-72 ni 2 ga bo'lish.
x^{2}-36x+\left(-18\right)^{2}=-\frac{583}{2}+\left(-18\right)^{2}
-36 ni bo‘lish, x shartining koeffitsienti, 2 ga -18 olish uchun. Keyin, -18 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-36x+324=-\frac{583}{2}+324
-18 kvadratini chiqarish.
x^{2}-36x+324=\frac{65}{2}
-\frac{583}{2} ni 324 ga qo'shish.
\left(x-18\right)^{2}=\frac{65}{2}
x^{2}-36x+324 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-18\right)^{2}}=\sqrt{\frac{65}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-18=\frac{\sqrt{130}}{2} x-18=-\frac{\sqrt{130}}{2}
Qisqartirish.
x=\frac{\sqrt{130}}{2}+18 x=-\frac{\sqrt{130}}{2}+18
18 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}