x uchun yechish
x=\frac{1}{2}=0,5
x=\frac{3}{4}=0,75
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}-12x+4=\left(x-1\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-2\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-12x+4=x^{2}-2x+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-12x+4-x^{2}=-2x+1
Ikkala tarafdan x^{2} ni ayirish.
8x^{2}-12x+4=-2x+1
8x^{2} ni olish uchun 9x^{2} va -x^{2} ni birlashtirish.
8x^{2}-12x+4+2x=1
2x ni ikki tarafga qo’shing.
8x^{2}-10x+4=1
-10x ni olish uchun -12x va 2x ni birlashtirish.
8x^{2}-10x+4-1=0
Ikkala tarafdan 1 ni ayirish.
8x^{2}-10x+3=0
3 olish uchun 4 dan 1 ni ayirish.
a+b=-10 ab=8\times 3=24
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 8x^{2}+ax+bx+3 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-24 -2,-12 -3,-8 -4,-6
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 24-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Har bir juftlik yigʻindisini hisoblang.
a=-6 b=-4
Yechim – -10 yigʻindisini beruvchi juftlik.
\left(8x^{2}-6x\right)+\left(-4x+3\right)
8x^{2}-10x+3 ni \left(8x^{2}-6x\right)+\left(-4x+3\right) sifatida qaytadan yozish.
2x\left(4x-3\right)-\left(4x-3\right)
Birinchi guruhda 2x ni va ikkinchi guruhda -1 ni faktordan chiqaring.
\left(4x-3\right)\left(2x-1\right)
Distributiv funktsiyasidan foydalangan holda 4x-3 umumiy terminini chiqaring.
x=\frac{3}{4} x=\frac{1}{2}
Tenglamani yechish uchun 4x-3=0 va 2x-1=0 ni yeching.
9x^{2}-12x+4=\left(x-1\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-2\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-12x+4=x^{2}-2x+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-12x+4-x^{2}=-2x+1
Ikkala tarafdan x^{2} ni ayirish.
8x^{2}-12x+4=-2x+1
8x^{2} ni olish uchun 9x^{2} va -x^{2} ni birlashtirish.
8x^{2}-12x+4+2x=1
2x ni ikki tarafga qo’shing.
8x^{2}-10x+4=1
-10x ni olish uchun -12x va 2x ni birlashtirish.
8x^{2}-10x+4-1=0
Ikkala tarafdan 1 ni ayirish.
8x^{2}-10x+3=0
3 olish uchun 4 dan 1 ni ayirish.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 8\times 3}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, -10 ni b va 3 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 8\times 3}}{2\times 8}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-32\times 3}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 8}
-32 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{4}}{2\times 8}
100 ni -96 ga qo'shish.
x=\frac{-\left(-10\right)±2}{2\times 8}
4 ning kvadrat ildizini chiqarish.
x=\frac{10±2}{2\times 8}
-10 ning teskarisi 10 ga teng.
x=\frac{10±2}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{12}{16}
x=\frac{10±2}{16} tenglamasini yeching, bunda ± musbat. 10 ni 2 ga qo'shish.
x=\frac{3}{4}
\frac{12}{16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{8}{16}
x=\frac{10±2}{16} tenglamasini yeching, bunda ± manfiy. 10 dan 2 ni ayirish.
x=\frac{1}{2}
\frac{8}{16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{4} x=\frac{1}{2}
Tenglama yechildi.
9x^{2}-12x+4=\left(x-1\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-2\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-12x+4=x^{2}-2x+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-12x+4-x^{2}=-2x+1
Ikkala tarafdan x^{2} ni ayirish.
8x^{2}-12x+4=-2x+1
8x^{2} ni olish uchun 9x^{2} va -x^{2} ni birlashtirish.
8x^{2}-12x+4+2x=1
2x ni ikki tarafga qo’shing.
8x^{2}-10x+4=1
-10x ni olish uchun -12x va 2x ni birlashtirish.
8x^{2}-10x=1-4
Ikkala tarafdan 4 ni ayirish.
8x^{2}-10x=-3
-3 olish uchun 1 dan 4 ni ayirish.
\frac{8x^{2}-10x}{8}=-\frac{3}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\left(-\frac{10}{8}\right)x=-\frac{3}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{4}x=-\frac{3}{8}
\frac{-10}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=-\frac{3}{8}+\left(-\frac{5}{8}\right)^{2}
-\frac{5}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{8} olish uchun. Keyin, -\frac{5}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{3}{8}+\frac{25}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{8} kvadratini chiqarish.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{1}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{8} ni \frac{25}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{8}\right)^{2}=\frac{1}{64}
x^{2}-\frac{5}{4}x+\frac{25}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{8}=\frac{1}{8} x-\frac{5}{8}=-\frac{1}{8}
Qisqartirish.
x=\frac{3}{4} x=\frac{1}{2}
\frac{5}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}