x uchun yechish
x=-8
x=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(3x\right)^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
Hisoblang: \left(3x-1\right)\left(3x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
3^{2}x^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
\left(3x\right)^{2} ni kengaytirish.
9x^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
9x^{2}-1-\left(10x^{2}+7x-12\right)=3
5x-4 ga 2x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
9x^{2}-1-10x^{2}-7x+12=3
10x^{2}+7x-12 teskarisini topish uchun har birining teskarisini toping.
-x^{2}-1-7x+12=3
-x^{2} ni olish uchun 9x^{2} va -10x^{2} ni birlashtirish.
-x^{2}+11-7x=3
11 olish uchun -1 va 12'ni qo'shing.
-x^{2}+11-7x-3=0
Ikkala tarafdan 3 ni ayirish.
-x^{2}+8-7x=0
8 olish uchun 11 dan 3 ni ayirish.
-x^{2}-7x+8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -7 ni b va 8 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\times 8}}{2\left(-1\right)}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49+4\times 8}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+32}}{2\left(-1\right)}
4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{81}}{2\left(-1\right)}
49 ni 32 ga qo'shish.
x=\frac{-\left(-7\right)±9}{2\left(-1\right)}
81 ning kvadrat ildizini chiqarish.
x=\frac{7±9}{2\left(-1\right)}
-7 ning teskarisi 7 ga teng.
x=\frac{7±9}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{16}{-2}
x=\frac{7±9}{-2} tenglamasini yeching, bunda ± musbat. 7 ni 9 ga qo'shish.
x=-8
16 ni -2 ga bo'lish.
x=-\frac{2}{-2}
x=\frac{7±9}{-2} tenglamasini yeching, bunda ± manfiy. 7 dan 9 ni ayirish.
x=1
-2 ni -2 ga bo'lish.
x=-8 x=1
Tenglama yechildi.
\left(3x\right)^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
Hisoblang: \left(3x-1\right)\left(3x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
3^{2}x^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
\left(3x\right)^{2} ni kengaytirish.
9x^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
9x^{2}-1-\left(10x^{2}+7x-12\right)=3
5x-4 ga 2x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
9x^{2}-1-10x^{2}-7x+12=3
10x^{2}+7x-12 teskarisini topish uchun har birining teskarisini toping.
-x^{2}-1-7x+12=3
-x^{2} ni olish uchun 9x^{2} va -10x^{2} ni birlashtirish.
-x^{2}+11-7x=3
11 olish uchun -1 va 12'ni qo'shing.
-x^{2}-7x=3-11
Ikkala tarafdan 11 ni ayirish.
-x^{2}-7x=-8
-8 olish uchun 3 dan 11 ni ayirish.
\frac{-x^{2}-7x}{-1}=-\frac{8}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{7}{-1}\right)x=-\frac{8}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+7x=-\frac{8}{-1}
-7 ni -1 ga bo'lish.
x^{2}+7x=8
-8 ni -1 ga bo'lish.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=8+\left(\frac{7}{2}\right)^{2}
7 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{2} olish uchun. Keyin, \frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+7x+\frac{49}{4}=8+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{2} kvadratini chiqarish.
x^{2}+7x+\frac{49}{4}=\frac{81}{4}
8 ni \frac{49}{4} ga qo'shish.
\left(x+\frac{7}{2}\right)^{2}=\frac{81}{4}
x^{2}+7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{2}=\frac{9}{2} x+\frac{7}{2}=-\frac{9}{2}
Qisqartirish.
x=1 x=-8
Tenglamaning ikkala tarafidan \frac{7}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}