Baholash
24a^{6}
Kengaytirish
24a^{6}
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(3a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-aa^{5}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Ayni asosning daraja ko‘rsatkichini bo‘lish uchun maxrajning darajasini surat darajasidan ayiring. 12 dan 7 ni ayirib, 5 ni oling.
\frac{\left(3a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 5 ni qo‘shib, 6 ni oling.
\frac{3^{3}\left(a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
\left(3a^{2}\right)^{3} ni kengaytirish.
\frac{3^{3}a^{6}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 3 ni ko‘paytirib, 6 ni oling.
\frac{27a^{6}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
3 daraja ko‘rsatkichini 3 ga hisoblang va 27 ni qiymatni oling.
\frac{27a^{6}}{\left(-\frac{1}{3}\right)^{5}a^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
\left(-\frac{1}{3}a\right)^{5} ni kengaytirish.
\frac{27a^{6}}{-\frac{1}{243}a^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
5 daraja ko‘rsatkichini -\frac{1}{3} ga hisoblang va -\frac{1}{243} ni qiymatni oling.
\frac{27a}{-\frac{1}{243}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Surat va maxrajdagi ikkala a^{5} ni qisqartiring.
\frac{27a\times 243}{-1}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
27a ni -\frac{1}{243} ga bo'lish 27a ga k'paytirish -\frac{1}{243} ga qaytarish.
\frac{6561a}{-1}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
6561 hosil qilish uchun 27 va 243 ni ko'paytirish.
-6561a-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Istalgan sonni -1 ga boʻlsangiz, uning qarama-qarshisi chiqadi.
-6561a-a^{6}+6561a+\left(-5a^{3}\right)^{2}
4 daraja ko‘rsatkichini -9 ga hisoblang va 6561 ni qiymatni oling.
-a^{6}+\left(-5a^{3}\right)^{2}
0 ni olish uchun -6561a va 6561a ni birlashtirish.
-a^{6}+\left(-5\right)^{2}\left(a^{3}\right)^{2}
\left(-5a^{3}\right)^{2} ni kengaytirish.
-a^{6}+\left(-5\right)^{2}a^{6}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 3 va 2 ni ko‘paytirib, 6 ni oling.
-a^{6}+25a^{6}
2 daraja ko‘rsatkichini -5 ga hisoblang va 25 ni qiymatni oling.
24a^{6}
24a^{6} ni olish uchun -a^{6} va 25a^{6} ni birlashtirish.
\frac{\left(3a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-aa^{5}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Ayni asosning daraja ko‘rsatkichini bo‘lish uchun maxrajning darajasini surat darajasidan ayiring. 12 dan 7 ni ayirib, 5 ni oling.
\frac{\left(3a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 5 ni qo‘shib, 6 ni oling.
\frac{3^{3}\left(a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
\left(3a^{2}\right)^{3} ni kengaytirish.
\frac{3^{3}a^{6}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 3 ni ko‘paytirib, 6 ni oling.
\frac{27a^{6}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
3 daraja ko‘rsatkichini 3 ga hisoblang va 27 ni qiymatni oling.
\frac{27a^{6}}{\left(-\frac{1}{3}\right)^{5}a^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
\left(-\frac{1}{3}a\right)^{5} ni kengaytirish.
\frac{27a^{6}}{-\frac{1}{243}a^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
5 daraja ko‘rsatkichini -\frac{1}{3} ga hisoblang va -\frac{1}{243} ni qiymatni oling.
\frac{27a}{-\frac{1}{243}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Surat va maxrajdagi ikkala a^{5} ni qisqartiring.
\frac{27a\times 243}{-1}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
27a ni -\frac{1}{243} ga bo'lish 27a ga k'paytirish -\frac{1}{243} ga qaytarish.
\frac{6561a}{-1}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
6561 hosil qilish uchun 27 va 243 ni ko'paytirish.
-6561a-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Istalgan sonni -1 ga boʻlsangiz, uning qarama-qarshisi chiqadi.
-6561a-a^{6}+6561a+\left(-5a^{3}\right)^{2}
4 daraja ko‘rsatkichini -9 ga hisoblang va 6561 ni qiymatni oling.
-a^{6}+\left(-5a^{3}\right)^{2}
0 ni olish uchun -6561a va 6561a ni birlashtirish.
-a^{6}+\left(-5\right)^{2}\left(a^{3}\right)^{2}
\left(-5a^{3}\right)^{2} ni kengaytirish.
-a^{6}+\left(-5\right)^{2}a^{6}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 3 va 2 ni ko‘paytirib, 6 ni oling.
-a^{6}+25a^{6}
2 daraja ko‘rsatkichini -5 ga hisoblang va 25 ni qiymatni oling.
24a^{6}
24a^{6} ni olish uchun -a^{6} va 25a^{6} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}