B uchun yechish (complex solution)
\left\{\begin{matrix}B=-\frac{-x+3-\pi }{g\left(x-1\right)}\text{, }&x\neq 1\text{ and }g\neq 0\\B\in \mathrm{C}\text{, }&x=3-\pi \text{ and }g=0\end{matrix}\right,
g uchun yechish (complex solution)
\left\{\begin{matrix}g=-\frac{-x+3-\pi }{B\left(x-1\right)}\text{, }&x\neq 1\text{ and }B\neq 0\\g\in \mathrm{C}\text{, }&x=3-\pi \text{ and }B=0\end{matrix}\right,
B uchun yechish
\left\{\begin{matrix}B=-\frac{-x+3-\pi }{g\left(x-1\right)}\text{, }&x\neq 1\text{ and }g\neq 0\\B\in \mathrm{R}\text{, }&x=3-\pi \text{ and }g=0\end{matrix}\right,
g uchun yechish
\left\{\begin{matrix}g=-\frac{-x+3-\pi }{B\left(x-1\right)}\text{, }&x\neq 1\text{ and }B\neq 0\\g\in \mathrm{R}\text{, }&x=3-\pi \text{ and }B=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
3-x+Bgx-Bg=\pi
Bg ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x+Bgx-Bg=\pi -3
Ikkala tarafdan 3 ni ayirish.
Bgx-Bg=\pi -3+x
x ni ikki tarafga qo’shing.
\left(gx-g\right)B=\pi -3+x
B'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(gx-g\right)B=x+\pi -3
Tenglama standart shaklda.
\frac{\left(gx-g\right)B}{gx-g}=\frac{x+\pi -3}{gx-g}
Ikki tarafini gx-g ga bo‘ling.
B=\frac{x+\pi -3}{gx-g}
gx-g ga bo'lish gx-g ga ko'paytirishni bekor qiladi.
B=\frac{x+\pi -3}{g\left(x-1\right)}
x-3+\pi ni gx-g ga bo'lish.
3-x+Bgx-Bg=\pi
Bg ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x+Bgx-Bg=\pi -3
Ikkala tarafdan 3 ni ayirish.
Bgx-Bg=\pi -3+x
x ni ikki tarafga qo’shing.
\left(Bx-B\right)g=\pi -3+x
g'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(Bx-B\right)g=x+\pi -3
Tenglama standart shaklda.
\frac{\left(Bx-B\right)g}{Bx-B}=\frac{x+\pi -3}{Bx-B}
Ikki tarafini Bx-B ga bo‘ling.
g=\frac{x+\pi -3}{Bx-B}
Bx-B ga bo'lish Bx-B ga ko'paytirishni bekor qiladi.
g=\frac{x+\pi -3}{B\left(x-1\right)}
x-3+\pi ni Bx-B ga bo'lish.
3-x+Bgx-Bg=\pi
Bg ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x+Bgx-Bg=\pi -3
Ikkala tarafdan 3 ni ayirish.
Bgx-Bg=\pi -3+x
x ni ikki tarafga qo’shing.
\left(gx-g\right)B=\pi -3+x
B'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(gx-g\right)B=x+\pi -3
Tenglama standart shaklda.
\frac{\left(gx-g\right)B}{gx-g}=\frac{x+\pi -3}{gx-g}
Ikki tarafini gx-g ga bo‘ling.
B=\frac{x+\pi -3}{gx-g}
gx-g ga bo'lish gx-g ga ko'paytirishni bekor qiladi.
B=\frac{x+\pi -3}{g\left(x-1\right)}
x-3+\pi ni gx-g ga bo'lish.
3-x+Bgx-Bg=\pi
Bg ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x+Bgx-Bg=\pi -3
Ikkala tarafdan 3 ni ayirish.
Bgx-Bg=\pi -3+x
x ni ikki tarafga qo’shing.
\left(Bx-B\right)g=\pi -3+x
g'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(Bx-B\right)g=x+\pi -3
Tenglama standart shaklda.
\frac{\left(Bx-B\right)g}{Bx-B}=\frac{x+\pi -3}{Bx-B}
Ikki tarafini Bx-B ga bo‘ling.
g=\frac{x+\pi -3}{Bx-B}
Bx-B ga bo'lish Bx-B ga ko'paytirishni bekor qiladi.
g=\frac{x+\pi -3}{B\left(x-1\right)}
x-3+\pi ni Bx-B ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}