Baholash
\frac{3\left(4-t\right)^{2}}{8}
Kengaytirish
\frac{3t^{2}}{8}-3t+6
Baham ko'rish
Klipbordga nusxa olish
\left(12-3t-\frac{3}{4}t\times 4-\frac{3}{4}t\left(-1\right)t\right)\times \frac{1}{2}
3-\frac{3}{4}t ifodaning har bir elementini 4-t ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\left(12-3t-\frac{3}{4}t\times 4-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
t^{2} hosil qilish uchun t va t ni ko'paytirish.
\left(12-3t-3t-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
4 va 4 ni qisqartiring.
\left(12-6t-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
-6t ni olish uchun -3t va -3t ni birlashtirish.
\left(12-6t+\frac{3}{4}t^{2}\right)\times \frac{1}{2}
\frac{3}{4} hosil qilish uchun -\frac{3}{4} va -1 ni ko'paytirish.
12\times \frac{1}{2}-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
12-6t+\frac{3}{4}t^{2} ga \frac{1}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{12}{2}-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
\frac{12}{2} hosil qilish uchun 12 va \frac{1}{2} ni ko'paytirish.
6-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
6 ni olish uchun 12 ni 2 ga bo‘ling.
6+\frac{-6}{2}t+\frac{3}{4}t^{2}\times \frac{1}{2}
\frac{-6}{2} hosil qilish uchun -6 va \frac{1}{2} ni ko'paytirish.
6-3t+\frac{3}{4}t^{2}\times \frac{1}{2}
-3 ni olish uchun -6 ni 2 ga bo‘ling.
6-3t+\frac{3\times 1}{4\times 2}t^{2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{3}{4} ni \frac{1}{2} ga ko‘paytiring.
6-3t+\frac{3}{8}t^{2}
\frac{3\times 1}{4\times 2} kasridagi ko‘paytirishlarni bajaring.
\left(12-3t-\frac{3}{4}t\times 4-\frac{3}{4}t\left(-1\right)t\right)\times \frac{1}{2}
3-\frac{3}{4}t ifodaning har bir elementini 4-t ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\left(12-3t-\frac{3}{4}t\times 4-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
t^{2} hosil qilish uchun t va t ni ko'paytirish.
\left(12-3t-3t-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
4 va 4 ni qisqartiring.
\left(12-6t-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
-6t ni olish uchun -3t va -3t ni birlashtirish.
\left(12-6t+\frac{3}{4}t^{2}\right)\times \frac{1}{2}
\frac{3}{4} hosil qilish uchun -\frac{3}{4} va -1 ni ko'paytirish.
12\times \frac{1}{2}-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
12-6t+\frac{3}{4}t^{2} ga \frac{1}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{12}{2}-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
\frac{12}{2} hosil qilish uchun 12 va \frac{1}{2} ni ko'paytirish.
6-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
6 ni olish uchun 12 ni 2 ga bo‘ling.
6+\frac{-6}{2}t+\frac{3}{4}t^{2}\times \frac{1}{2}
\frac{-6}{2} hosil qilish uchun -6 va \frac{1}{2} ni ko'paytirish.
6-3t+\frac{3}{4}t^{2}\times \frac{1}{2}
-3 ni olish uchun -6 ni 2 ga bo‘ling.
6-3t+\frac{3\times 1}{4\times 2}t^{2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{3}{4} ni \frac{1}{2} ga ko‘paytiring.
6-3t+\frac{3}{8}t^{2}
\frac{3\times 1}{4\times 2} kasridagi ko‘paytirishlarni bajaring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}