Asosiy tarkibga oʻtish
r uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9+6r+r^{2}+\left(15+r\right)^{2}=18^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3+r\right)^{2} kengaytirilishi uchun ishlating.
9+6r+r^{2}+225+30r+r^{2}=18^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(15+r\right)^{2} kengaytirilishi uchun ishlating.
234+6r+r^{2}+30r+r^{2}=18^{2}
234 olish uchun 9 va 225'ni qo'shing.
234+36r+r^{2}+r^{2}=18^{2}
36r ni olish uchun 6r va 30r ni birlashtirish.
234+36r+2r^{2}=18^{2}
2r^{2} ni olish uchun r^{2} va r^{2} ni birlashtirish.
234+36r+2r^{2}=324
2 daraja ko‘rsatkichini 18 ga hisoblang va 324 ni qiymatni oling.
234+36r+2r^{2}-324=0
Ikkala tarafdan 324 ni ayirish.
-90+36r+2r^{2}=0
-90 olish uchun 234 dan 324 ni ayirish.
2r^{2}+36r-90=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
r=\frac{-36±\sqrt{36^{2}-4\times 2\left(-90\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 36 ni b va -90 ni c bilan almashtiring.
r=\frac{-36±\sqrt{1296-4\times 2\left(-90\right)}}{2\times 2}
36 kvadratini chiqarish.
r=\frac{-36±\sqrt{1296-8\left(-90\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
r=\frac{-36±\sqrt{1296+720}}{2\times 2}
-8 ni -90 marotabaga ko'paytirish.
r=\frac{-36±\sqrt{2016}}{2\times 2}
1296 ni 720 ga qo'shish.
r=\frac{-36±12\sqrt{14}}{2\times 2}
2016 ning kvadrat ildizini chiqarish.
r=\frac{-36±12\sqrt{14}}{4}
2 ni 2 marotabaga ko'paytirish.
r=\frac{12\sqrt{14}-36}{4}
r=\frac{-36±12\sqrt{14}}{4} tenglamasini yeching, bunda ± musbat. -36 ni 12\sqrt{14} ga qo'shish.
r=3\sqrt{14}-9
-36+12\sqrt{14} ni 4 ga bo'lish.
r=\frac{-12\sqrt{14}-36}{4}
r=\frac{-36±12\sqrt{14}}{4} tenglamasini yeching, bunda ± manfiy. -36 dan 12\sqrt{14} ni ayirish.
r=-3\sqrt{14}-9
-36-12\sqrt{14} ni 4 ga bo'lish.
r=3\sqrt{14}-9 r=-3\sqrt{14}-9
Tenglama yechildi.
9+6r+r^{2}+\left(15+r\right)^{2}=18^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3+r\right)^{2} kengaytirilishi uchun ishlating.
9+6r+r^{2}+225+30r+r^{2}=18^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(15+r\right)^{2} kengaytirilishi uchun ishlating.
234+6r+r^{2}+30r+r^{2}=18^{2}
234 olish uchun 9 va 225'ni qo'shing.
234+36r+r^{2}+r^{2}=18^{2}
36r ni olish uchun 6r va 30r ni birlashtirish.
234+36r+2r^{2}=18^{2}
2r^{2} ni olish uchun r^{2} va r^{2} ni birlashtirish.
234+36r+2r^{2}=324
2 daraja ko‘rsatkichini 18 ga hisoblang va 324 ni qiymatni oling.
36r+2r^{2}=324-234
Ikkala tarafdan 234 ni ayirish.
36r+2r^{2}=90
90 olish uchun 324 dan 234 ni ayirish.
2r^{2}+36r=90
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2r^{2}+36r}{2}=\frac{90}{2}
Ikki tarafini 2 ga bo‘ling.
r^{2}+\frac{36}{2}r=\frac{90}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
r^{2}+18r=\frac{90}{2}
36 ni 2 ga bo'lish.
r^{2}+18r=45
90 ni 2 ga bo'lish.
r^{2}+18r+9^{2}=45+9^{2}
18 ni bo‘lish, x shartining koeffitsienti, 2 ga 9 olish uchun. Keyin, 9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
r^{2}+18r+81=45+81
9 kvadratini chiqarish.
r^{2}+18r+81=126
45 ni 81 ga qo'shish.
\left(r+9\right)^{2}=126
r^{2}+18r+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(r+9\right)^{2}}=\sqrt{126}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
r+9=3\sqrt{14} r+9=-3\sqrt{14}
Qisqartirish.
r=3\sqrt{14}-9 r=-3\sqrt{14}-9
Tenglamaning ikkala tarafidan 9 ni ayirish.