X uchun yechish
X=4-2i
Baham ko'rish
Klipbordga nusxa olish
\left(3+2i\right)X=2\times 2+2\times \left(-3i\right)+4i\times 2+4\left(-3\right)i^{2}
Binomlarni ko‘paytirgandek 2+4i va 2-3i murakkab sonlarni ko‘paytiring.
\left(3+2i\right)X=2\times 2+2\times \left(-3i\right)+4i\times 2+4\left(-3\right)\left(-1\right)
Ta’rifi bo‘yicha, i^{2} – bu -1.
\left(3+2i\right)X=4-6i+8i+12
2\times 2+2\times \left(-3i\right)+4i\times 2+4\left(-3\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\left(3+2i\right)X=4+12+\left(-6+8\right)i
4-6i+8i+12 ichida real va mavhum qismlarni birlashtiring.
\left(3+2i\right)X=16+2i
4+12+\left(-6+8\right)i ichida qo‘shishlarni bajaring.
X=\frac{16+2i}{3+2i}
Ikki tarafini 3+2i ga bo‘ling.
X=\frac{\left(16+2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
\frac{16+2i}{3+2i}ning surat va maxrajini murakkab tutash maxraj 3-2i bilan ko‘paytiring.
X=\frac{\left(16+2i\right)\left(3-2i\right)}{3^{2}-2^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
X=\frac{\left(16+2i\right)\left(3-2i\right)}{13}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
X=\frac{16\times 3+16\times \left(-2i\right)+2i\times 3+2\left(-2\right)i^{2}}{13}
Binomlarni ko‘paytirgandek 16+2i va 3-2i murakkab sonlarni ko‘paytiring.
X=\frac{16\times 3+16\times \left(-2i\right)+2i\times 3+2\left(-2\right)\left(-1\right)}{13}
Ta’rifi bo‘yicha, i^{2} – bu -1.
X=\frac{48-32i+6i+4}{13}
16\times 3+16\times \left(-2i\right)+2i\times 3+2\left(-2\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
X=\frac{48+4+\left(-32+6\right)i}{13}
48-32i+6i+4 ichida real va mavhum qismlarni birlashtiring.
X=\frac{52-26i}{13}
48+4+\left(-32+6\right)i ichida qo‘shishlarni bajaring.
X=4-2i
4-2i ni olish uchun 52-26i ni 13 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}