x uchun yechish
x=7
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x qiymati -3,-1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x+1\right)\left(x+3\right) ga, x+3,4\left(x^{2}+4x+3\right) ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x+1 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x^{2}+4x+3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Faktor: x^{2}-x-2.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 ni \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} marotabaga ko'paytirish.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} va \frac{7x-5}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3\left(x-2\right)\left(x+1\right)+7x-5 ichidagi ko‘paytirishlarni bajaring.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+3x-6x-6+7x-5 kabi iboralarga o‘xshab birlashtiring.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-2\right)\left(x+1\right) va x+1 ning eng kichik umumiy karralisi \left(x-2\right)\left(x+1\right). \frac{3x}{x+1} ni \frac{x-2}{x-2} marotabaga ko'paytirish.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} va \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x\left(x-2\right) ichidagi ko‘paytirishlarni bajaring.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x^{2}+6x kabi iboralarga o‘xshab birlashtiring.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)} ni yagona kasrga aylantiring.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
4x+4 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 20x+20 ni \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} marotabaga ko'paytirish.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} va \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40 kabi iboralarga o‘xshab birlashtiring.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
Ikkala tarafdan 9x^{2} ni ayirish.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
Faktor: x^{2}-x-2.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. -9x^{2} ni \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} marotabaga ko'paytirish.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} va \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Ikkala tarafdan 43x ni ayirish.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Faktor: x^{2}-x-2.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. -43x ni \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} marotabaga ko'paytirish.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} va \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x kabi iboralarga o‘xshab birlashtiring.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Ikkala tarafdan 8 ni ayirish.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Faktor: x^{2}-x-2.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 8 ni \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} marotabaga ko'paytirish.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} va \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16 kabi iboralarga o‘xshab birlashtiring.
x^{4}-5x^{3}-19x^{2}+29x+42=0
x qiymati -1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+1\right) ga ko'paytirish.
±42,±21,±14,±7,±6,±3,±2,±1
Ratsional ildiz teoremasiga koʻra, koʻphadlarning barcha ratsional ildizlari \frac{p}{q} shakli ichida, bu yerda p konstant shart 42 bilan boʻlinadi va q yetakchi koeffisientni 1 boʻladi. Barcha nomzodlarni oching \frac{p}{q}.
x=-1
Eng kichigidan boshlab, mutlaq qiymatgacha butun son qiymatlarni sinab koʻrish orqali ana shunday bitta ildizni toping. Agar butun sonlar ildizlari topilmasa, kasrlarni sinab koʻring.
x^{3}-6x^{2}-13x+42=0
Faktor teoremasiga koʻra, x-k har bir k ildizining faktoridir. x^{3}-6x^{2}-13x+42 ni olish uchun x^{4}-5x^{3}-19x^{2}+29x+42 ni x+1 ga bo‘ling. Natija 0 ga teng boʻlgandagi tenglamani yeching.
±42,±21,±14,±7,±6,±3,±2,±1
Ratsional ildiz teoremasiga koʻra, koʻphadlarning barcha ratsional ildizlari \frac{p}{q} shakli ichida, bu yerda p konstant shart 42 bilan boʻlinadi va q yetakchi koeffisientni 1 boʻladi. Barcha nomzodlarni oching \frac{p}{q}.
x=2
Eng kichigidan boshlab, mutlaq qiymatgacha butun son qiymatlarni sinab koʻrish orqali ana shunday bitta ildizni toping. Agar butun sonlar ildizlari topilmasa, kasrlarni sinab koʻring.
x^{2}-4x-21=0
Faktor teoremasiga koʻra, x-k har bir k ildizining faktoridir. x^{2}-4x-21 ni olish uchun x^{3}-6x^{2}-13x+42 ni x-2 ga bo‘ling. Natija 0 ga teng boʻlgandagi tenglamani yeching.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun -4 ni va c uchun -21 ni ayiring.
x=\frac{4±10}{2}
Hisoblarni amalga oshiring.
x=-3 x=7
x^{2}-4x-21=0 tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=7
Oʻzgaruvchi teng boʻlmagan qiymatlarni olib tashlang.
x=-1 x=2 x=-3 x=7
Barcha topilgan yechimlar roʻyxati.
x=7
x qiymati -1,2,-3 qiymatlaridan birortasiga teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}