x uchun yechish
x = \frac{\sqrt{11569} + 137}{10} \approx 24,455928598
x = \frac{137 - \sqrt{11569}}{10} \approx 2,944071402
Grafik
Baham ko'rish
Klipbordga nusxa olish
280x-10x^{2}-6x=720
280-10x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
274x-10x^{2}=720
274x ni olish uchun 280x va -6x ni birlashtirish.
274x-10x^{2}-720=0
Ikkala tarafdan 720 ni ayirish.
-10x^{2}+274x-720=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-274±\sqrt{274^{2}-4\left(-10\right)\left(-720\right)}}{2\left(-10\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -10 ni a, 274 ni b va -720 ni c bilan almashtiring.
x=\frac{-274±\sqrt{75076-4\left(-10\right)\left(-720\right)}}{2\left(-10\right)}
274 kvadratini chiqarish.
x=\frac{-274±\sqrt{75076+40\left(-720\right)}}{2\left(-10\right)}
-4 ni -10 marotabaga ko'paytirish.
x=\frac{-274±\sqrt{75076-28800}}{2\left(-10\right)}
40 ni -720 marotabaga ko'paytirish.
x=\frac{-274±\sqrt{46276}}{2\left(-10\right)}
75076 ni -28800 ga qo'shish.
x=\frac{-274±2\sqrt{11569}}{2\left(-10\right)}
46276 ning kvadrat ildizini chiqarish.
x=\frac{-274±2\sqrt{11569}}{-20}
2 ni -10 marotabaga ko'paytirish.
x=\frac{2\sqrt{11569}-274}{-20}
x=\frac{-274±2\sqrt{11569}}{-20} tenglamasini yeching, bunda ± musbat. -274 ni 2\sqrt{11569} ga qo'shish.
x=\frac{137-\sqrt{11569}}{10}
-274+2\sqrt{11569} ni -20 ga bo'lish.
x=\frac{-2\sqrt{11569}-274}{-20}
x=\frac{-274±2\sqrt{11569}}{-20} tenglamasini yeching, bunda ± manfiy. -274 dan 2\sqrt{11569} ni ayirish.
x=\frac{\sqrt{11569}+137}{10}
-274-2\sqrt{11569} ni -20 ga bo'lish.
x=\frac{137-\sqrt{11569}}{10} x=\frac{\sqrt{11569}+137}{10}
Tenglama yechildi.
280x-10x^{2}-6x=720
280-10x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
274x-10x^{2}=720
274x ni olish uchun 280x va -6x ni birlashtirish.
-10x^{2}+274x=720
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-10x^{2}+274x}{-10}=\frac{720}{-10}
Ikki tarafini -10 ga bo‘ling.
x^{2}+\frac{274}{-10}x=\frac{720}{-10}
-10 ga bo'lish -10 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{137}{5}x=\frac{720}{-10}
\frac{274}{-10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{137}{5}x=-72
720 ni -10 ga bo'lish.
x^{2}-\frac{137}{5}x+\left(-\frac{137}{10}\right)^{2}=-72+\left(-\frac{137}{10}\right)^{2}
-\frac{137}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{137}{10} olish uchun. Keyin, -\frac{137}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{137}{5}x+\frac{18769}{100}=-72+\frac{18769}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{137}{10} kvadratini chiqarish.
x^{2}-\frac{137}{5}x+\frac{18769}{100}=\frac{11569}{100}
-72 ni \frac{18769}{100} ga qo'shish.
\left(x-\frac{137}{10}\right)^{2}=\frac{11569}{100}
x^{2}-\frac{137}{5}x+\frac{18769}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{137}{10}\right)^{2}}=\sqrt{\frac{11569}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{137}{10}=\frac{\sqrt{11569}}{10} x-\frac{137}{10}=-\frac{\sqrt{11569}}{10}
Qisqartirish.
x=\frac{\sqrt{11569}+137}{10} x=\frac{137-\sqrt{11569}}{10}
\frac{137}{10} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}