Baholash
121
Omil
11^{2}
Baham ko'rish
Klipbordga nusxa olish
\left(24\times \frac{3}{4}+\frac{12}{\sqrt[3]{64}}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
\frac{9}{16} boʻlinmasining kvadrat ildizini \frac{\sqrt{9}}{\sqrt{16}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing. Surat va maxrajni kvadrat ildizdan chiqaring.
\left(18+\frac{12}{\sqrt[3]{64}}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
18 hosil qilish uchun 24 va \frac{3}{4} ni ko'paytirish.
\left(18+\frac{12}{4}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
\sqrt[3]{64} ni hisoblab, 4 natijasiga ega bo‘ling.
\left(18+3-\left(\frac{1}{10}\right)^{-1}\right)^{2}
3 ni olish uchun 12 ni 4 ga bo‘ling.
\left(21-\left(\frac{1}{10}\right)^{-1}\right)^{2}
21 olish uchun 18 va 3'ni qo'shing.
\left(21-10\right)^{2}
-1 daraja ko‘rsatkichini \frac{1}{10} ga hisoblang va 10 ni qiymatni oling.
11^{2}
11 olish uchun 21 dan 10 ni ayirish.
121
2 daraja ko‘rsatkichini 11 ga hisoblang va 121 ni qiymatni oling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}