t uchun yechish
t=2
t = \frac{28}{13} = 2\frac{2}{13} \approx 2,153846154
Baham ko'rish
Klipbordga nusxa olish
20^{2}t^{2}+\left(90-30t\right)^{2}=2500
\left(20t\right)^{2} ni kengaytirish.
400t^{2}+\left(90-30t\right)^{2}=2500
2 daraja ko‘rsatkichini 20 ga hisoblang va 400 ni qiymatni oling.
400t^{2}+8100-5400t+900t^{2}=2500
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(90-30t\right)^{2} kengaytirilishi uchun ishlating.
1300t^{2}+8100-5400t=2500
1300t^{2} ni olish uchun 400t^{2} va 900t^{2} ni birlashtirish.
1300t^{2}+8100-5400t-2500=0
Ikkala tarafdan 2500 ni ayirish.
1300t^{2}+5600-5400t=0
5600 olish uchun 8100 dan 2500 ni ayirish.
1300t^{2}-5400t+5600=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-5400\right)±\sqrt{\left(-5400\right)^{2}-4\times 1300\times 5600}}{2\times 1300}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1300 ni a, -5400 ni b va 5600 ni c bilan almashtiring.
t=\frac{-\left(-5400\right)±\sqrt{29160000-4\times 1300\times 5600}}{2\times 1300}
-5400 kvadratini chiqarish.
t=\frac{-\left(-5400\right)±\sqrt{29160000-5200\times 5600}}{2\times 1300}
-4 ni 1300 marotabaga ko'paytirish.
t=\frac{-\left(-5400\right)±\sqrt{29160000-29120000}}{2\times 1300}
-5200 ni 5600 marotabaga ko'paytirish.
t=\frac{-\left(-5400\right)±\sqrt{40000}}{2\times 1300}
29160000 ni -29120000 ga qo'shish.
t=\frac{-\left(-5400\right)±200}{2\times 1300}
40000 ning kvadrat ildizini chiqarish.
t=\frac{5400±200}{2\times 1300}
-5400 ning teskarisi 5400 ga teng.
t=\frac{5400±200}{2600}
2 ni 1300 marotabaga ko'paytirish.
t=\frac{5600}{2600}
t=\frac{5400±200}{2600} tenglamasini yeching, bunda ± musbat. 5400 ni 200 ga qo'shish.
t=\frac{28}{13}
\frac{5600}{2600} ulushini 200 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t=\frac{5200}{2600}
t=\frac{5400±200}{2600} tenglamasini yeching, bunda ± manfiy. 5400 dan 200 ni ayirish.
t=2
5200 ni 2600 ga bo'lish.
t=\frac{28}{13} t=2
Tenglama yechildi.
20^{2}t^{2}+\left(90-30t\right)^{2}=2500
\left(20t\right)^{2} ni kengaytirish.
400t^{2}+\left(90-30t\right)^{2}=2500
2 daraja ko‘rsatkichini 20 ga hisoblang va 400 ni qiymatni oling.
400t^{2}+8100-5400t+900t^{2}=2500
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(90-30t\right)^{2} kengaytirilishi uchun ishlating.
1300t^{2}+8100-5400t=2500
1300t^{2} ni olish uchun 400t^{2} va 900t^{2} ni birlashtirish.
1300t^{2}-5400t=2500-8100
Ikkala tarafdan 8100 ni ayirish.
1300t^{2}-5400t=-5600
-5600 olish uchun 2500 dan 8100 ni ayirish.
\frac{1300t^{2}-5400t}{1300}=-\frac{5600}{1300}
Ikki tarafini 1300 ga bo‘ling.
t^{2}+\left(-\frac{5400}{1300}\right)t=-\frac{5600}{1300}
1300 ga bo'lish 1300 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{54}{13}t=-\frac{5600}{1300}
\frac{-5400}{1300} ulushini 100 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-\frac{54}{13}t=-\frac{56}{13}
\frac{-5600}{1300} ulushini 100 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-\frac{54}{13}t+\left(-\frac{27}{13}\right)^{2}=-\frac{56}{13}+\left(-\frac{27}{13}\right)^{2}
-\frac{54}{13} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{27}{13} olish uchun. Keyin, -\frac{27}{13} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{54}{13}t+\frac{729}{169}=-\frac{56}{13}+\frac{729}{169}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{27}{13} kvadratini chiqarish.
t^{2}-\frac{54}{13}t+\frac{729}{169}=\frac{1}{169}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{56}{13} ni \frac{729}{169} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t-\frac{27}{13}\right)^{2}=\frac{1}{169}
t^{2}-\frac{54}{13}t+\frac{729}{169} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{27}{13}\right)^{2}}=\sqrt{\frac{1}{169}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{27}{13}=\frac{1}{13} t-\frac{27}{13}=-\frac{1}{13}
Qisqartirish.
t=\frac{28}{13} t=2
\frac{27}{13} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}