Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4y^{2}+12y+9+y^{2}=4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2y+3\right)^{2} kengaytirilishi uchun ishlating.
5y^{2}+12y+9=4
5y^{2} ni olish uchun 4y^{2} va y^{2} ni birlashtirish.
5y^{2}+12y+9-4=0
Ikkala tarafdan 4 ni ayirish.
5y^{2}+12y+5=0
5 olish uchun 9 dan 4 ni ayirish.
y=\frac{-12±\sqrt{12^{2}-4\times 5\times 5}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 12 ni b va 5 ni c bilan almashtiring.
y=\frac{-12±\sqrt{144-4\times 5\times 5}}{2\times 5}
12 kvadratini chiqarish.
y=\frac{-12±\sqrt{144-20\times 5}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
y=\frac{-12±\sqrt{144-100}}{2\times 5}
-20 ni 5 marotabaga ko'paytirish.
y=\frac{-12±\sqrt{44}}{2\times 5}
144 ni -100 ga qo'shish.
y=\frac{-12±2\sqrt{11}}{2\times 5}
44 ning kvadrat ildizini chiqarish.
y=\frac{-12±2\sqrt{11}}{10}
2 ni 5 marotabaga ko'paytirish.
y=\frac{2\sqrt{11}-12}{10}
y=\frac{-12±2\sqrt{11}}{10} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{11} ga qo'shish.
y=\frac{\sqrt{11}-6}{5}
-12+2\sqrt{11} ni 10 ga bo'lish.
y=\frac{-2\sqrt{11}-12}{10}
y=\frac{-12±2\sqrt{11}}{10} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{11} ni ayirish.
y=\frac{-\sqrt{11}-6}{5}
-12-2\sqrt{11} ni 10 ga bo'lish.
y=\frac{\sqrt{11}-6}{5} y=\frac{-\sqrt{11}-6}{5}
Tenglama yechildi.
4y^{2}+12y+9+y^{2}=4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2y+3\right)^{2} kengaytirilishi uchun ishlating.
5y^{2}+12y+9=4
5y^{2} ni olish uchun 4y^{2} va y^{2} ni birlashtirish.
5y^{2}+12y=4-9
Ikkala tarafdan 9 ni ayirish.
5y^{2}+12y=-5
-5 olish uchun 4 dan 9 ni ayirish.
\frac{5y^{2}+12y}{5}=-\frac{5}{5}
Ikki tarafini 5 ga bo‘ling.
y^{2}+\frac{12}{5}y=-\frac{5}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
y^{2}+\frac{12}{5}y=-1
-5 ni 5 ga bo'lish.
y^{2}+\frac{12}{5}y+\left(\frac{6}{5}\right)^{2}=-1+\left(\frac{6}{5}\right)^{2}
\frac{12}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{6}{5} olish uchun. Keyin, \frac{6}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+\frac{12}{5}y+\frac{36}{25}=-1+\frac{36}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{6}{5} kvadratini chiqarish.
y^{2}+\frac{12}{5}y+\frac{36}{25}=\frac{11}{25}
-1 ni \frac{36}{25} ga qo'shish.
\left(y+\frac{6}{5}\right)^{2}=\frac{11}{25}
y^{2}+\frac{12}{5}y+\frac{36}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{6}{5}\right)^{2}}=\sqrt{\frac{11}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{6}{5}=\frac{\sqrt{11}}{5} y+\frac{6}{5}=-\frac{\sqrt{11}}{5}
Qisqartirish.
y=\frac{\sqrt{11}-6}{5} y=\frac{-\sqrt{11}-6}{5}
Tenglamaning ikkala tarafidan \frac{6}{5} ni ayirish.