x uchun yechish (complex solution)
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3}\approx 18,333333333+49,792303665i
x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}\approx 18,333333333-49,792303665i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(2x-40\right)\left(3x-50\right)\times 130+2000\times 1000=64000
130 olish uchun 30 va 100'ni qo'shing.
\left(6x^{2}-220x+2000\right)\times 130+2000\times 1000=64000
2x-40 ga 3x-50 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
780x^{2}-28600x+260000+2000\times 1000=64000
6x^{2}-220x+2000 ga 130 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
780x^{2}-28600x+260000+2000000=64000
2000000 hosil qilish uchun 2000 va 1000 ni ko'paytirish.
780x^{2}-28600x+2260000=64000
2260000 olish uchun 260000 va 2000000'ni qo'shing.
780x^{2}-28600x+2260000-64000=0
Ikkala tarafdan 64000 ni ayirish.
780x^{2}-28600x+2196000=0
2196000 olish uchun 2260000 dan 64000 ni ayirish.
x=\frac{-\left(-28600\right)±\sqrt{\left(-28600\right)^{2}-4\times 780\times 2196000}}{2\times 780}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 780 ni a, -28600 ni b va 2196000 ni c bilan almashtiring.
x=\frac{-\left(-28600\right)±\sqrt{817960000-4\times 780\times 2196000}}{2\times 780}
-28600 kvadratini chiqarish.
x=\frac{-\left(-28600\right)±\sqrt{817960000-3120\times 2196000}}{2\times 780}
-4 ni 780 marotabaga ko'paytirish.
x=\frac{-\left(-28600\right)±\sqrt{817960000-6851520000}}{2\times 780}
-3120 ni 2196000 marotabaga ko'paytirish.
x=\frac{-\left(-28600\right)±\sqrt{-6033560000}}{2\times 780}
817960000 ni -6851520000 ga qo'shish.
x=\frac{-\left(-28600\right)±200\sqrt{150839}i}{2\times 780}
-6033560000 ning kvadrat ildizini chiqarish.
x=\frac{28600±200\sqrt{150839}i}{2\times 780}
-28600 ning teskarisi 28600 ga teng.
x=\frac{28600±200\sqrt{150839}i}{1560}
2 ni 780 marotabaga ko'paytirish.
x=\frac{28600+200\sqrt{150839}i}{1560}
x=\frac{28600±200\sqrt{150839}i}{1560} tenglamasini yeching, bunda ± musbat. 28600 ni 200i\sqrt{150839} ga qo'shish.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
28600+200i\sqrt{150839} ni 1560 ga bo'lish.
x=\frac{-200\sqrt{150839}i+28600}{1560}
x=\frac{28600±200\sqrt{150839}i}{1560} tenglamasini yeching, bunda ± manfiy. 28600 dan 200i\sqrt{150839} ni ayirish.
x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
28600-200i\sqrt{150839} ni 1560 ga bo'lish.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3} x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
Tenglama yechildi.
\left(2x-40\right)\left(3x-50\right)\times 130+2000\times 1000=64000
130 olish uchun 30 va 100'ni qo'shing.
\left(6x^{2}-220x+2000\right)\times 130+2000\times 1000=64000
2x-40 ga 3x-50 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
780x^{2}-28600x+260000+2000\times 1000=64000
6x^{2}-220x+2000 ga 130 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
780x^{2}-28600x+260000+2000000=64000
2000000 hosil qilish uchun 2000 va 1000 ni ko'paytirish.
780x^{2}-28600x+2260000=64000
2260000 olish uchun 260000 va 2000000'ni qo'shing.
780x^{2}-28600x=64000-2260000
Ikkala tarafdan 2260000 ni ayirish.
780x^{2}-28600x=-2196000
-2196000 olish uchun 64000 dan 2260000 ni ayirish.
\frac{780x^{2}-28600x}{780}=-\frac{2196000}{780}
Ikki tarafini 780 ga bo‘ling.
x^{2}+\left(-\frac{28600}{780}\right)x=-\frac{2196000}{780}
780 ga bo'lish 780 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{110}{3}x=-\frac{2196000}{780}
\frac{-28600}{780} ulushini 260 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{110}{3}x=-\frac{36600}{13}
\frac{-2196000}{780} ulushini 60 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{110}{3}x+\left(-\frac{55}{3}\right)^{2}=-\frac{36600}{13}+\left(-\frac{55}{3}\right)^{2}
-\frac{110}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{55}{3} olish uchun. Keyin, -\frac{55}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=-\frac{36600}{13}+\frac{3025}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{55}{3} kvadratini chiqarish.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=-\frac{290075}{117}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{36600}{13} ni \frac{3025}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{55}{3}\right)^{2}=-\frac{290075}{117}
x^{2}-\frac{110}{3}x+\frac{3025}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{55}{3}\right)^{2}}=\sqrt{-\frac{290075}{117}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{55}{3}=\frac{5\sqrt{150839}i}{39} x-\frac{55}{3}=-\frac{5\sqrt{150839}i}{39}
Qisqartirish.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3} x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
\frac{55}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}