x uchun yechish
x=-1
x=4
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-12x+16=\left(5-x\right)\left(4-x\right)
2x-4 ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-12x+16=20-9x+x^{2}
5-x ga 4-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-12x+16-20=-9x+x^{2}
Ikkala tarafdan 20 ni ayirish.
2x^{2}-12x-4=-9x+x^{2}
-4 olish uchun 16 dan 20 ni ayirish.
2x^{2}-12x-4+9x=x^{2}
9x ni ikki tarafga qo’shing.
2x^{2}-3x-4=x^{2}
-3x ni olish uchun -12x va 9x ni birlashtirish.
2x^{2}-3x-4-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
x^{2}-3x-4=0
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -4 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
9 ni 16 ga qo'shish.
x=\frac{-\left(-3\right)±5}{2}
25 ning kvadrat ildizini chiqarish.
x=\frac{3±5}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{8}{2}
x=\frac{3±5}{2} tenglamasini yeching, bunda ± musbat. 3 ni 5 ga qo'shish.
x=4
8 ni 2 ga bo'lish.
x=-\frac{2}{2}
x=\frac{3±5}{2} tenglamasini yeching, bunda ± manfiy. 3 dan 5 ni ayirish.
x=-1
-2 ni 2 ga bo'lish.
x=4 x=-1
Tenglama yechildi.
2x^{2}-12x+16=\left(5-x\right)\left(4-x\right)
2x-4 ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-12x+16=20-9x+x^{2}
5-x ga 4-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-12x+16+9x=20+x^{2}
9x ni ikki tarafga qo’shing.
2x^{2}-3x+16=20+x^{2}
-3x ni olish uchun -12x va 9x ni birlashtirish.
2x^{2}-3x+16-x^{2}=20
Ikkala tarafdan x^{2} ni ayirish.
x^{2}-3x+16=20
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-3x=20-16
Ikkala tarafdan 16 ni ayirish.
x^{2}-3x=4
4 olish uchun 20 dan 16 ni ayirish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
4 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Qisqartirish.
x=4 x=-1
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}