x uchun yechish
x = \frac{10}{7} = 1\frac{3}{7} \approx 1,428571429
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}-1+3\left(x+2\right)\left(x-2\right)=7\left(x-1\right)^{2}
2x-1 ga 1+2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}-1+\left(3x+6\right)\left(x-2\right)=7\left(x-1\right)^{2}
3 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-1+3x^{2}-12=7\left(x-1\right)^{2}
3x+6 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-1-12=7\left(x-1\right)^{2}
7x^{2} ni olish uchun 4x^{2} va 3x^{2} ni birlashtirish.
7x^{2}-13=7\left(x-1\right)^{2}
-13 olish uchun -1 dan 12 ni ayirish.
7x^{2}-13=7\left(x^{2}-2x+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
7x^{2}-13=7x^{2}-14x+7
7 ga x^{2}-2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-13-7x^{2}=-14x+7
Ikkala tarafdan 7x^{2} ni ayirish.
-13=-14x+7
0 ni olish uchun 7x^{2} va -7x^{2} ni birlashtirish.
-14x+7=-13
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-14x=-13-7
Ikkala tarafdan 7 ni ayirish.
-14x=-20
-20 olish uchun -13 dan 7 ni ayirish.
x=\frac{-20}{-14}
Ikki tarafini -14 ga bo‘ling.
x=\frac{10}{7}
\frac{-20}{-14} ulushini -2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}