Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-6x^{2}+11x-4=-6x+11x+4
2x-1 ga -3x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-6x^{2}+11x-4=5x+4
5x ni olish uchun -6x va 11x ni birlashtirish.
-6x^{2}+11x-4-5x=4
Ikkala tarafdan 5x ni ayirish.
-6x^{2}+6x-4=4
6x ni olish uchun 11x va -5x ni birlashtirish.
-6x^{2}+6x-4-4=0
Ikkala tarafdan 4 ni ayirish.
-6x^{2}+6x-8=0
-8 olish uchun -4 dan 4 ni ayirish.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, 6 ni b va -8 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+24\left(-8\right)}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36-192}}{2\left(-6\right)}
24 ni -8 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{-156}}{2\left(-6\right)}
36 ni -192 ga qo'shish.
x=\frac{-6±2\sqrt{39}i}{2\left(-6\right)}
-156 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{39}i}{-12}
2 ni -6 marotabaga ko'paytirish.
x=\frac{-6+2\sqrt{39}i}{-12}
x=\frac{-6±2\sqrt{39}i}{-12} tenglamasini yeching, bunda ± musbat. -6 ni 2i\sqrt{39} ga qo'shish.
x=-\frac{\sqrt{39}i}{6}+\frac{1}{2}
-6+2i\sqrt{39} ni -12 ga bo'lish.
x=\frac{-2\sqrt{39}i-6}{-12}
x=\frac{-6±2\sqrt{39}i}{-12} tenglamasini yeching, bunda ± manfiy. -6 dan 2i\sqrt{39} ni ayirish.
x=\frac{\sqrt{39}i}{6}+\frac{1}{2}
-6-2i\sqrt{39} ni -12 ga bo'lish.
x=-\frac{\sqrt{39}i}{6}+\frac{1}{2} x=\frac{\sqrt{39}i}{6}+\frac{1}{2}
Tenglama yechildi.
-6x^{2}+11x-4=-6x+11x+4
2x-1 ga -3x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-6x^{2}+11x-4=5x+4
5x ni olish uchun -6x va 11x ni birlashtirish.
-6x^{2}+11x-4-5x=4
Ikkala tarafdan 5x ni ayirish.
-6x^{2}+6x-4=4
6x ni olish uchun 11x va -5x ni birlashtirish.
-6x^{2}+6x=4+4
4 ni ikki tarafga qo’shing.
-6x^{2}+6x=8
8 olish uchun 4 va 4'ni qo'shing.
\frac{-6x^{2}+6x}{-6}=\frac{8}{-6}
Ikki tarafini -6 ga bo‘ling.
x^{2}+\frac{6}{-6}x=\frac{8}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{8}{-6}
6 ni -6 ga bo'lish.
x^{2}-x=-\frac{4}{3}
\frac{8}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{4}{3}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=-\frac{4}{3}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=-\frac{13}{12}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{3} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{2}\right)^{2}=-\frac{13}{12}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{13}{12}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{39}i}{6} x-\frac{1}{2}=-\frac{\sqrt{39}i}{6}
Qisqartirish.
x=\frac{\sqrt{39}i}{6}+\frac{1}{2} x=-\frac{\sqrt{39}i}{6}+\frac{1}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.