Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2^{2}x^{2}-2x\left(-x\right)-3=-1
\left(2x\right)^{2} ni kengaytirish.
4x^{2}-2x\left(-x\right)-3=-1
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}-2x\left(-x\right)=-1+3
3 ni ikki tarafga qo’shing.
4x^{2}-2x\left(-x\right)=2
2 olish uchun -1 va 3'ni qo'shing.
4x^{2}-2x^{2}\left(-1\right)=2
x^{2} hosil qilish uchun x va x ni ko'paytirish.
4x^{2}+2x^{2}=2
2 hosil qilish uchun -2 va -1 ni ko'paytirish.
6x^{2}=2
6x^{2} ni olish uchun 4x^{2} va 2x^{2} ni birlashtirish.
x^{2}=\frac{2}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}=\frac{1}{3}
\frac{2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2^{2}x^{2}-2x\left(-x\right)-3=-1
\left(2x\right)^{2} ni kengaytirish.
4x^{2}-2x\left(-x\right)-3=-1
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}-2x\left(-x\right)-3+1=0
1 ni ikki tarafga qo’shing.
4x^{2}-2x\left(-x\right)-2=0
-2 olish uchun -3 va 1'ni qo'shing.
4x^{2}-2x^{2}\left(-1\right)-2=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
4x^{2}+2x^{2}-2=0
2 hosil qilish uchun -2 va -1 ni ko'paytirish.
6x^{2}-2=0
6x^{2} ni olish uchun 4x^{2} va 2x^{2} ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-2\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va -2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\left(-2\right)}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\left(-2\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{48}}{2\times 6}
-24 ni -2 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{3}}{2\times 6}
48 ning kvadrat ildizini chiqarish.
x=\frac{0±4\sqrt{3}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{\sqrt{3}}{3}
x=\frac{0±4\sqrt{3}}{12} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{3}}{3}
x=\frac{0±4\sqrt{3}}{12} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Tenglama yechildi.