x uchun yechish (complex solution)
x=1
x=-1
x=-\sqrt{2}i\approx -0-1,414213562i
x=\sqrt{2}i\approx 1,414213562i
x uchun yechish
x=-1
x=1
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
( 2 x ^ { 2 } + 2 ) ^ { 2 } - 2 ( 2 x ^ { 2 } + 2 ) - 8 = 0
Baham ko'rish
Klipbordga nusxa olish
4\left(x^{2}\right)^{2}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x^{2}+2\right)^{2} kengaytirilishi uchun ishlating.
4x^{4}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
4x^{4}+8x^{2}+4-4x^{2}-4-8=0
-2 ga 2x^{2}+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{4}+4x^{2}+4-4-8=0
4x^{2} ni olish uchun 8x^{2} va -4x^{2} ni birlashtirish.
4x^{4}+4x^{2}-8=0
0 olish uchun 4 dan 4 ni ayirish.
4t^{2}+4t-8=0
x^{2} uchun t ni almashtiring.
t=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 4 ni, b uchun 4 ni va c uchun -8 ni ayiring.
t=\frac{-4±12}{8}
Hisoblarni amalga oshiring.
t=1 t=-2
t=\frac{-4±12}{8} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=-1 x=1 x=-\sqrt{2}i x=\sqrt{2}i
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
4\left(x^{2}\right)^{2}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x^{2}+2\right)^{2} kengaytirilishi uchun ishlating.
4x^{4}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
4x^{4}+8x^{2}+4-4x^{2}-4-8=0
-2 ga 2x^{2}+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{4}+4x^{2}+4-4-8=0
4x^{2} ni olish uchun 8x^{2} va -4x^{2} ni birlashtirish.
4x^{4}+4x^{2}-8=0
0 olish uchun 4 dan 4 ni ayirish.
4t^{2}+4t-8=0
x^{2} uchun t ni almashtiring.
t=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 4 ni, b uchun 4 ni va c uchun -8 ni ayiring.
t=\frac{-4±12}{8}
Hisoblarni amalga oshiring.
t=1 t=-2
t=\frac{-4±12}{8} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=1 x=-1
x=t^{2} boʻlganda, yechimlar musbat t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}