x uchun yechish
x=-\frac{y^{4}}{8}-\frac{y}{2}+2
Grafik
Viktorina
Linear Equation
5xshash muammolar:
( 2 x + y - 8 ) ^ { 2 } = ( 2 x + y ) ^ { 2 } + \quad 4 y ^ { 4 }
Baham ko'rish
Klipbordga nusxa olish
4x^{2}+4xy-32x+y^{2}-16y+64=\left(2x+y\right)^{2}+4y^{4}
2x+y-8 kvadratini chiqarish.
4x^{2}+4xy-32x+y^{2}-16y+64=4x^{2}+4xy+y^{2}+4y^{4}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+y\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4xy-32x+y^{2}-16y+64-4x^{2}=4xy+y^{2}+4y^{4}
Ikkala tarafdan 4x^{2} ni ayirish.
4xy-32x+y^{2}-16y+64=4xy+y^{2}+4y^{4}
0 ni olish uchun 4x^{2} va -4x^{2} ni birlashtirish.
4xy-32x+y^{2}-16y+64-4xy=y^{2}+4y^{4}
Ikkala tarafdan 4xy ni ayirish.
-32x+y^{2}-16y+64=y^{2}+4y^{4}
0 ni olish uchun 4xy va -4xy ni birlashtirish.
-32x-16y+64=y^{2}+4y^{4}-y^{2}
Ikkala tarafdan y^{2} ni ayirish.
-32x-16y+64=4y^{4}
0 ni olish uchun y^{2} va -y^{2} ni birlashtirish.
-32x+64=4y^{4}+16y
16y ni ikki tarafga qo’shing.
-32x=4y^{4}+16y-64
Ikkala tarafdan 64 ni ayirish.
\frac{-32x}{-32}=\frac{4y^{4}+16y-64}{-32}
Ikki tarafini -32 ga bo‘ling.
x=\frac{4y^{4}+16y-64}{-32}
-32 ga bo'lish -32 ga ko'paytirishni bekor qiladi.
x=-\frac{y^{4}}{8}-\frac{y}{2}+2
4y^{4}+16y-64 ni -32 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}