Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
2x+5 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
x-1 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+3x-5-x^{2}-4x+5=0
x^{2}+4x-5 teskarisini topish uchun har birining teskarisini toping.
x^{2}+3x-5-4x+5=0
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-x-5+5=0
-x ni olish uchun 3x va -4x ni birlashtirish.
x^{2}-x=0
0 olish uchun -5 va 5'ni qo'shing.
x\left(x-1\right)=0
x omili.
x=0 x=1
Tenglamani yechish uchun x=0 va x-1=0 ni yeching.
2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
2x+5 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
x-1 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+3x-5-x^{2}-4x+5=0
x^{2}+4x-5 teskarisini topish uchun har birining teskarisini toping.
x^{2}+3x-5-4x+5=0
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-x-5+5=0
-x ni olish uchun 3x va -4x ni birlashtirish.
x^{2}-x=0
0 olish uchun -5 va 5'ni qo'shing.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±1}{2}
1 ning kvadrat ildizini chiqarish.
x=\frac{1±1}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{2}{2}
x=\frac{1±1}{2} tenglamasini yeching, bunda ± musbat. 1 ni 1 ga qo'shish.
x=1
2 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{1±1}{2} tenglamasini yeching, bunda ± manfiy. 1 dan 1 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=1 x=0
Tenglama yechildi.
2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
2x+5 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
x-1 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+3x-5-x^{2}-4x+5=0
x^{2}+4x-5 teskarisini topish uchun har birining teskarisini toping.
x^{2}+3x-5-4x+5=0
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-x-5+5=0
-x ni olish uchun 3x va -4x ni birlashtirish.
x^{2}-x=0
0 olish uchun -5 va 5'ni qo'shing.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
x=1 x=0
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.