Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
2x+3 ga x^{2}-16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
x-4 ga x+40 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
4x^{2} ni olish uchun 3x^{2} va x^{2} ni birlashtirish.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
4x ni olish uchun -32x va 36x ni birlashtirish.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
-208 olish uchun -48 dan 160 ni ayirish.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
2 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
2x-8 ga x^{2}-16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Ikkala tarafdan 2x^{3} ni ayirish.
4x+4x^{2}-208=-32x-8x^{2}+128
0 ni olish uchun 2x^{3} va -2x^{3} ni birlashtirish.
4x+4x^{2}-208+32x=-8x^{2}+128
32x ni ikki tarafga qo’shing.
36x+4x^{2}-208=-8x^{2}+128
36x ni olish uchun 4x va 32x ni birlashtirish.
36x+4x^{2}-208+8x^{2}=128
8x^{2} ni ikki tarafga qo’shing.
36x+12x^{2}-208=128
12x^{2} ni olish uchun 4x^{2} va 8x^{2} ni birlashtirish.
36x+12x^{2}-208-128=0
Ikkala tarafdan 128 ni ayirish.
36x+12x^{2}-336=0
-336 olish uchun -208 dan 128 ni ayirish.
3x+x^{2}-28=0
Ikki tarafini 12 ga bo‘ling.
x^{2}+3x-28=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=3 ab=1\left(-28\right)=-28
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-28 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,28 -2,14 -4,7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -28-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+28=27 -2+14=12 -4+7=3
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=7
Yechim – 3 yigʻindisini beruvchi juftlik.
\left(x^{2}-4x\right)+\left(7x-28\right)
x^{2}+3x-28 ni \left(x^{2}-4x\right)+\left(7x-28\right) sifatida qaytadan yozish.
x\left(x-4\right)+7\left(x-4\right)
Birinchi guruhda x ni va ikkinchi guruhda 7 ni faktordan chiqaring.
\left(x-4\right)\left(x+7\right)
Distributiv funktsiyasidan foydalangan holda x-4 umumiy terminini chiqaring.
x=4 x=-7
Tenglamani yechish uchun x-4=0 va x+7=0 ni yeching.
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
2x+3 ga x^{2}-16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
x-4 ga x+40 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
4x^{2} ni olish uchun 3x^{2} va x^{2} ni birlashtirish.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
4x ni olish uchun -32x va 36x ni birlashtirish.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
-208 olish uchun -48 dan 160 ni ayirish.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
2 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
2x-8 ga x^{2}-16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Ikkala tarafdan 2x^{3} ni ayirish.
4x+4x^{2}-208=-32x-8x^{2}+128
0 ni olish uchun 2x^{3} va -2x^{3} ni birlashtirish.
4x+4x^{2}-208+32x=-8x^{2}+128
32x ni ikki tarafga qo’shing.
36x+4x^{2}-208=-8x^{2}+128
36x ni olish uchun 4x va 32x ni birlashtirish.
36x+4x^{2}-208+8x^{2}=128
8x^{2} ni ikki tarafga qo’shing.
36x+12x^{2}-208=128
12x^{2} ni olish uchun 4x^{2} va 8x^{2} ni birlashtirish.
36x+12x^{2}-208-128=0
Ikkala tarafdan 128 ni ayirish.
36x+12x^{2}-336=0
-336 olish uchun -208 dan 128 ni ayirish.
12x^{2}+36x-336=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-36±\sqrt{36^{2}-4\times 12\left(-336\right)}}{2\times 12}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 12 ni a, 36 ni b va -336 ni c bilan almashtiring.
x=\frac{-36±\sqrt{1296-4\times 12\left(-336\right)}}{2\times 12}
36 kvadratini chiqarish.
x=\frac{-36±\sqrt{1296-48\left(-336\right)}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
x=\frac{-36±\sqrt{1296+16128}}{2\times 12}
-48 ni -336 marotabaga ko'paytirish.
x=\frac{-36±\sqrt{17424}}{2\times 12}
1296 ni 16128 ga qo'shish.
x=\frac{-36±132}{2\times 12}
17424 ning kvadrat ildizini chiqarish.
x=\frac{-36±132}{24}
2 ni 12 marotabaga ko'paytirish.
x=\frac{96}{24}
x=\frac{-36±132}{24} tenglamasini yeching, bunda ± musbat. -36 ni 132 ga qo'shish.
x=4
96 ni 24 ga bo'lish.
x=-\frac{168}{24}
x=\frac{-36±132}{24} tenglamasini yeching, bunda ± manfiy. -36 dan 132 ni ayirish.
x=-7
-168 ni 24 ga bo'lish.
x=4 x=-7
Tenglama yechildi.
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
2x+3 ga x^{2}-16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
x-4 ga x+40 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
4x^{2} ni olish uchun 3x^{2} va x^{2} ni birlashtirish.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
4x ni olish uchun -32x va 36x ni birlashtirish.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
-208 olish uchun -48 dan 160 ni ayirish.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
2 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
2x-8 ga x^{2}-16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Ikkala tarafdan 2x^{3} ni ayirish.
4x+4x^{2}-208=-32x-8x^{2}+128
0 ni olish uchun 2x^{3} va -2x^{3} ni birlashtirish.
4x+4x^{2}-208+32x=-8x^{2}+128
32x ni ikki tarafga qo’shing.
36x+4x^{2}-208=-8x^{2}+128
36x ni olish uchun 4x va 32x ni birlashtirish.
36x+4x^{2}-208+8x^{2}=128
8x^{2} ni ikki tarafga qo’shing.
36x+12x^{2}-208=128
12x^{2} ni olish uchun 4x^{2} va 8x^{2} ni birlashtirish.
36x+12x^{2}=128+208
208 ni ikki tarafga qo’shing.
36x+12x^{2}=336
336 olish uchun 128 va 208'ni qo'shing.
12x^{2}+36x=336
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{12x^{2}+36x}{12}=\frac{336}{12}
Ikki tarafini 12 ga bo‘ling.
x^{2}+\frac{36}{12}x=\frac{336}{12}
12 ga bo'lish 12 ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{336}{12}
36 ni 12 ga bo'lish.
x^{2}+3x=28
336 ni 12 ga bo'lish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
28 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Qisqartirish.
x=4 x=-7
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.