x uchun yechish
x=-9
x=7
Grafik
Viktorina
Polynomial
5xshash muammolar:
( 2 x + 3 ) ^ { 2 } - 15 ^ { 2 } = 10 ^ { 2 } - ( x - 1 ) ^ { 2 }
Baham ko'rish
Klipbordga nusxa olish
4x^{2}+12x+9-15^{2}=10^{2}-\left(x-1\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+3\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+12x+9-225=10^{2}-\left(x-1\right)^{2}
2 daraja ko‘rsatkichini 15 ga hisoblang va 225 ni qiymatni oling.
4x^{2}+12x-216=10^{2}-\left(x-1\right)^{2}
-216 olish uchun 9 dan 225 ni ayirish.
4x^{2}+12x-216=100-\left(x-1\right)^{2}
2 daraja ko‘rsatkichini 10 ga hisoblang va 100 ni qiymatni oling.
4x^{2}+12x-216=100-\left(x^{2}-2x+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+12x-216=100-x^{2}+2x-1
x^{2}-2x+1 teskarisini topish uchun har birining teskarisini toping.
4x^{2}+12x-216=99-x^{2}+2x
99 olish uchun 100 dan 1 ni ayirish.
4x^{2}+12x-216-99=-x^{2}+2x
Ikkala tarafdan 99 ni ayirish.
4x^{2}+12x-315=-x^{2}+2x
-315 olish uchun -216 dan 99 ni ayirish.
4x^{2}+12x-315+x^{2}=2x
x^{2} ni ikki tarafga qo’shing.
5x^{2}+12x-315=2x
5x^{2} ni olish uchun 4x^{2} va x^{2} ni birlashtirish.
5x^{2}+12x-315-2x=0
Ikkala tarafdan 2x ni ayirish.
5x^{2}+10x-315=0
10x ni olish uchun 12x va -2x ni birlashtirish.
x^{2}+2x-63=0
Ikki tarafini 5 ga bo‘ling.
a+b=2 ab=1\left(-63\right)=-63
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-63 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,63 -3,21 -7,9
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -63-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+63=62 -3+21=18 -7+9=2
Har bir juftlik yigʻindisini hisoblang.
a=-7 b=9
Yechim – 2 yigʻindisini beruvchi juftlik.
\left(x^{2}-7x\right)+\left(9x-63\right)
x^{2}+2x-63 ni \left(x^{2}-7x\right)+\left(9x-63\right) sifatida qaytadan yozish.
x\left(x-7\right)+9\left(x-7\right)
Birinchi guruhda x ni va ikkinchi guruhda 9 ni faktordan chiqaring.
\left(x-7\right)\left(x+9\right)
Distributiv funktsiyasidan foydalangan holda x-7 umumiy terminini chiqaring.
x=7 x=-9
Tenglamani yechish uchun x-7=0 va x+9=0 ni yeching.
4x^{2}+12x+9-15^{2}=10^{2}-\left(x-1\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+3\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+12x+9-225=10^{2}-\left(x-1\right)^{2}
2 daraja ko‘rsatkichini 15 ga hisoblang va 225 ni qiymatni oling.
4x^{2}+12x-216=10^{2}-\left(x-1\right)^{2}
-216 olish uchun 9 dan 225 ni ayirish.
4x^{2}+12x-216=100-\left(x-1\right)^{2}
2 daraja ko‘rsatkichini 10 ga hisoblang va 100 ni qiymatni oling.
4x^{2}+12x-216=100-\left(x^{2}-2x+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+12x-216=100-x^{2}+2x-1
x^{2}-2x+1 teskarisini topish uchun har birining teskarisini toping.
4x^{2}+12x-216=99-x^{2}+2x
99 olish uchun 100 dan 1 ni ayirish.
4x^{2}+12x-216-99=-x^{2}+2x
Ikkala tarafdan 99 ni ayirish.
4x^{2}+12x-315=-x^{2}+2x
-315 olish uchun -216 dan 99 ni ayirish.
4x^{2}+12x-315+x^{2}=2x
x^{2} ni ikki tarafga qo’shing.
5x^{2}+12x-315=2x
5x^{2} ni olish uchun 4x^{2} va x^{2} ni birlashtirish.
5x^{2}+12x-315-2x=0
Ikkala tarafdan 2x ni ayirish.
5x^{2}+10x-315=0
10x ni olish uchun 12x va -2x ni birlashtirish.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-315\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 10 ni b va -315 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\times 5\left(-315\right)}}{2\times 5}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-20\left(-315\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100+6300}}{2\times 5}
-20 ni -315 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{6400}}{2\times 5}
100 ni 6300 ga qo'shish.
x=\frac{-10±80}{2\times 5}
6400 ning kvadrat ildizini chiqarish.
x=\frac{-10±80}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{70}{10}
x=\frac{-10±80}{10} tenglamasini yeching, bunda ± musbat. -10 ni 80 ga qo'shish.
x=7
70 ni 10 ga bo'lish.
x=-\frac{90}{10}
x=\frac{-10±80}{10} tenglamasini yeching, bunda ± manfiy. -10 dan 80 ni ayirish.
x=-9
-90 ni 10 ga bo'lish.
x=7 x=-9
Tenglama yechildi.
4x^{2}+12x+9-15^{2}=10^{2}-\left(x-1\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+3\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+12x+9-225=10^{2}-\left(x-1\right)^{2}
2 daraja ko‘rsatkichini 15 ga hisoblang va 225 ni qiymatni oling.
4x^{2}+12x-216=10^{2}-\left(x-1\right)^{2}
-216 olish uchun 9 dan 225 ni ayirish.
4x^{2}+12x-216=100-\left(x-1\right)^{2}
2 daraja ko‘rsatkichini 10 ga hisoblang va 100 ni qiymatni oling.
4x^{2}+12x-216=100-\left(x^{2}-2x+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+12x-216=100-x^{2}+2x-1
x^{2}-2x+1 teskarisini topish uchun har birining teskarisini toping.
4x^{2}+12x-216=99-x^{2}+2x
99 olish uchun 100 dan 1 ni ayirish.
4x^{2}+12x-216+x^{2}=99+2x
x^{2} ni ikki tarafga qo’shing.
5x^{2}+12x-216=99+2x
5x^{2} ni olish uchun 4x^{2} va x^{2} ni birlashtirish.
5x^{2}+12x-216-2x=99
Ikkala tarafdan 2x ni ayirish.
5x^{2}+10x-216=99
10x ni olish uchun 12x va -2x ni birlashtirish.
5x^{2}+10x=99+216
216 ni ikki tarafga qo’shing.
5x^{2}+10x=315
315 olish uchun 99 va 216'ni qo'shing.
\frac{5x^{2}+10x}{5}=\frac{315}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{10}{5}x=\frac{315}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{315}{5}
10 ni 5 ga bo'lish.
x^{2}+2x=63
315 ni 5 ga bo'lish.
x^{2}+2x+1^{2}=63+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=63+1
1 kvadratini chiqarish.
x^{2}+2x+1=64
63 ni 1 ga qo'shish.
\left(x+1\right)^{2}=64
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{64}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=8 x+1=-8
Qisqartirish.
x=7 x=-9
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}