x uchun yechish
x = \frac{\sqrt{401} - 11}{4} \approx 2,256246099
x=\frac{-\sqrt{401}-11}{4}\approx -7,756246099
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+11x+5=8\times 5
2x+1 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+11x+5=40
40 hosil qilish uchun 8 va 5 ni ko'paytirish.
2x^{2}+11x+5-40=0
Ikkala tarafdan 40 ni ayirish.
2x^{2}+11x-35=0
-35 olish uchun 5 dan 40 ni ayirish.
x=\frac{-11±\sqrt{11^{2}-4\times 2\left(-35\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 11 ni b va -35 ni c bilan almashtiring.
x=\frac{-11±\sqrt{121-4\times 2\left(-35\right)}}{2\times 2}
11 kvadratini chiqarish.
x=\frac{-11±\sqrt{121-8\left(-35\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{121+280}}{2\times 2}
-8 ni -35 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{401}}{2\times 2}
121 ni 280 ga qo'shish.
x=\frac{-11±\sqrt{401}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{401}-11}{4}
x=\frac{-11±\sqrt{401}}{4} tenglamasini yeching, bunda ± musbat. -11 ni \sqrt{401} ga qo'shish.
x=\frac{-\sqrt{401}-11}{4}
x=\frac{-11±\sqrt{401}}{4} tenglamasini yeching, bunda ± manfiy. -11 dan \sqrt{401} ni ayirish.
x=\frac{\sqrt{401}-11}{4} x=\frac{-\sqrt{401}-11}{4}
Tenglama yechildi.
2x^{2}+11x+5=8\times 5
2x+1 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+11x+5=40
40 hosil qilish uchun 8 va 5 ni ko'paytirish.
2x^{2}+11x=40-5
Ikkala tarafdan 5 ni ayirish.
2x^{2}+11x=35
35 olish uchun 40 dan 5 ni ayirish.
\frac{2x^{2}+11x}{2}=\frac{35}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{11}{2}x=\frac{35}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=\frac{35}{2}+\left(\frac{11}{4}\right)^{2}
\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{4} olish uchun. Keyin, \frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{35}{2}+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{4} kvadratini chiqarish.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{401}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{35}{2} ni \frac{121}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{11}{4}\right)^{2}=\frac{401}{16}
x^{2}+\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{401}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{4}=\frac{\sqrt{401}}{4} x+\frac{11}{4}=-\frac{\sqrt{401}}{4}
Qisqartirish.
x=\frac{\sqrt{401}-11}{4} x=\frac{-\sqrt{401}-11}{4}
Tenglamaning ikkala tarafidan \frac{11}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}