Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+4x+1=3-x
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+1\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4x+1-3=-x
Ikkala tarafdan 3 ni ayirish.
4x^{2}+4x-2=-x
-2 olish uchun 1 dan 3 ni ayirish.
4x^{2}+4x-2+x=0
x ni ikki tarafga qo’shing.
4x^{2}+5x-2=0
5x ni olish uchun 4x va x ni birlashtirish.
x=\frac{-5±\sqrt{5^{2}-4\times 4\left(-2\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 5 ni b va -2 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 4\left(-2\right)}}{2\times 4}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-16\left(-2\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25+32}}{2\times 4}
-16 ni -2 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{57}}{2\times 4}
25 ni 32 ga qo'shish.
x=\frac{-5±\sqrt{57}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{\sqrt{57}-5}{8}
x=\frac{-5±\sqrt{57}}{8} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{57} ga qo'shish.
x=\frac{-\sqrt{57}-5}{8}
x=\frac{-5±\sqrt{57}}{8} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{57} ni ayirish.
x=\frac{\sqrt{57}-5}{8} x=\frac{-\sqrt{57}-5}{8}
Tenglama yechildi.
4x^{2}+4x+1=3-x
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+1\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4x+1+x=3
x ni ikki tarafga qo’shing.
4x^{2}+5x+1=3
5x ni olish uchun 4x va x ni birlashtirish.
4x^{2}+5x=3-1
Ikkala tarafdan 1 ni ayirish.
4x^{2}+5x=2
2 olish uchun 3 dan 1 ni ayirish.
\frac{4x^{2}+5x}{4}=\frac{2}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{5}{4}x=\frac{2}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{4}x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{1}{2}+\left(\frac{5}{8}\right)^{2}
\frac{5}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{8} olish uchun. Keyin, \frac{5}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{1}{2}+\frac{25}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{8} kvadratini chiqarish.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{57}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{25}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{8}\right)^{2}=\frac{57}{64}
x^{2}+\frac{5}{4}x+\frac{25}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{57}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{8}=\frac{\sqrt{57}}{8} x+\frac{5}{8}=-\frac{\sqrt{57}}{8}
Qisqartirish.
x=\frac{\sqrt{57}-5}{8} x=\frac{-\sqrt{57}-5}{8}
Tenglamaning ikkala tarafidan \frac{5}{8} ni ayirish.