Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+4x+1=\left(x-5\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+1\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4x+1=x^{2}-10x+25
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4x+1-x^{2}=-10x+25
Ikkala tarafdan x^{2} ni ayirish.
3x^{2}+4x+1=-10x+25
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}+4x+1+10x=25
10x ni ikki tarafga qo’shing.
3x^{2}+14x+1=25
14x ni olish uchun 4x va 10x ni birlashtirish.
3x^{2}+14x+1-25=0
Ikkala tarafdan 25 ni ayirish.
3x^{2}+14x-24=0
-24 olish uchun 1 dan 25 ni ayirish.
a+b=14 ab=3\left(-24\right)=-72
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 3x^{2}+ax+bx-24 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -72-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=18
Yechim – 14 yigʻindisini beruvchi juftlik.
\left(3x^{2}-4x\right)+\left(18x-24\right)
3x^{2}+14x-24 ni \left(3x^{2}-4x\right)+\left(18x-24\right) sifatida qaytadan yozish.
x\left(3x-4\right)+6\left(3x-4\right)
Birinchi guruhda x ni va ikkinchi guruhda 6 ni faktordan chiqaring.
\left(3x-4\right)\left(x+6\right)
Distributiv funktsiyasidan foydalangan holda 3x-4 umumiy terminini chiqaring.
x=\frac{4}{3} x=-6
Tenglamani yechish uchun 3x-4=0 va x+6=0 ni yeching.
4x^{2}+4x+1=\left(x-5\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+1\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4x+1=x^{2}-10x+25
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4x+1-x^{2}=-10x+25
Ikkala tarafdan x^{2} ni ayirish.
3x^{2}+4x+1=-10x+25
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}+4x+1+10x=25
10x ni ikki tarafga qo’shing.
3x^{2}+14x+1=25
14x ni olish uchun 4x va 10x ni birlashtirish.
3x^{2}+14x+1-25=0
Ikkala tarafdan 25 ni ayirish.
3x^{2}+14x-24=0
-24 olish uchun 1 dan 25 ni ayirish.
x=\frac{-14±\sqrt{14^{2}-4\times 3\left(-24\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 14 ni b va -24 ni c bilan almashtiring.
x=\frac{-14±\sqrt{196-4\times 3\left(-24\right)}}{2\times 3}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196-12\left(-24\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{196+288}}{2\times 3}
-12 ni -24 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{484}}{2\times 3}
196 ni 288 ga qo'shish.
x=\frac{-14±22}{2\times 3}
484 ning kvadrat ildizini chiqarish.
x=\frac{-14±22}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{8}{6}
x=\frac{-14±22}{6} tenglamasini yeching, bunda ± musbat. -14 ni 22 ga qo'shish.
x=\frac{4}{3}
\frac{8}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{36}{6}
x=\frac{-14±22}{6} tenglamasini yeching, bunda ± manfiy. -14 dan 22 ni ayirish.
x=-6
-36 ni 6 ga bo'lish.
x=\frac{4}{3} x=-6
Tenglama yechildi.
4x^{2}+4x+1=\left(x-5\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+1\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4x+1=x^{2}-10x+25
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+4x+1-x^{2}=-10x+25
Ikkala tarafdan x^{2} ni ayirish.
3x^{2}+4x+1=-10x+25
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}+4x+1+10x=25
10x ni ikki tarafga qo’shing.
3x^{2}+14x+1=25
14x ni olish uchun 4x va 10x ni birlashtirish.
3x^{2}+14x=25-1
Ikkala tarafdan 1 ni ayirish.
3x^{2}+14x=24
24 olish uchun 25 dan 1 ni ayirish.
\frac{3x^{2}+14x}{3}=\frac{24}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{14}{3}x=\frac{24}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{14}{3}x=8
24 ni 3 ga bo'lish.
x^{2}+\frac{14}{3}x+\left(\frac{7}{3}\right)^{2}=8+\left(\frac{7}{3}\right)^{2}
\frac{14}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{3} olish uchun. Keyin, \frac{7}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{14}{3}x+\frac{49}{9}=8+\frac{49}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{3} kvadratini chiqarish.
x^{2}+\frac{14}{3}x+\frac{49}{9}=\frac{121}{9}
8 ni \frac{49}{9} ga qo'shish.
\left(x+\frac{7}{3}\right)^{2}=\frac{121}{9}
x^{2}+\frac{14}{3}x+\frac{49}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{3}=\frac{11}{3} x+\frac{7}{3}=-\frac{11}{3}
Qisqartirish.
x=\frac{4}{3} x=-6
Tenglamaning ikkala tarafidan \frac{7}{3} ni ayirish.