Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
2x+\frac{1}{3}y ifodaning har bir elementini x-3y ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
y^{2} hosil qilish uchun y va y ni ko'paytirish.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
-\frac{17}{3}xy ni olish uchun -6xy va \frac{1}{3}yx ni birlashtirish.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
\frac{-3}{3} hosil qilish uchun \frac{1}{3} va -3 ni ko'paytirish.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
-1 ni olish uchun -3 ni 3 ga bo‘ling.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
2x+y ifodaning har bir elementini \frac{1}{2}x-y ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
x^{2} hosil qilish uchun x va x ni ko'paytirish.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
2 va 2 ni qisqartiring.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
-\frac{3}{2}xy ni olish uchun -2xy va y\times \frac{1}{2}x ni birlashtirish.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
x^{2}-\frac{3}{2}xy-y^{2} teskarisini topish uchun har birining teskarisini toping.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
-\frac{3}{2}xy ning teskarisi \frac{3}{2}xy ga teng.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
-y^{2} ning teskarisi y^{2} ga teng.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
-\frac{25}{6}xy ni olish uchun -\frac{17}{3}xy va \frac{3}{2}xy ni birlashtirish.
x^{2}-\frac{25}{6}xy
0 ni olish uchun -y^{2} va y^{2} ni birlashtirish.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
2x+\frac{1}{3}y ifodaning har bir elementini x-3y ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
y^{2} hosil qilish uchun y va y ni ko'paytirish.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
-\frac{17}{3}xy ni olish uchun -6xy va \frac{1}{3}yx ni birlashtirish.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
\frac{-3}{3} hosil qilish uchun \frac{1}{3} va -3 ni ko'paytirish.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
-1 ni olish uchun -3 ni 3 ga bo‘ling.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
2x+y ifodaning har bir elementini \frac{1}{2}x-y ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
x^{2} hosil qilish uchun x va x ni ko'paytirish.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
2 va 2 ni qisqartiring.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
-\frac{3}{2}xy ni olish uchun -2xy va y\times \frac{1}{2}x ni birlashtirish.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
x^{2}-\frac{3}{2}xy-y^{2} teskarisini topish uchun har birining teskarisini toping.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
-\frac{3}{2}xy ning teskarisi \frac{3}{2}xy ga teng.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
-y^{2} ning teskarisi y^{2} ga teng.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
-\frac{25}{6}xy ni olish uchun -\frac{17}{3}xy va \frac{3}{2}xy ni birlashtirish.
x^{2}-\frac{25}{6}xy
0 ni olish uchun -y^{2} va y^{2} ni birlashtirish.