Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(2a^{2}+b\right)^{2} kengaytirilishi uchun ishlating.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(-2a^{2}\right)^{2} ni kengaytirish.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
8 hosil qilish uchun 2 va 4 ni ko'paytirish.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
-4a^{4} ni olish uchun 4a^{4} va -8a^{4} ni birlashtirish.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
\left(\frac{1}{2}b\right)^{2} ni kengaytirish.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
2 daraja ko‘rsatkichini \frac{1}{2} ga hisoblang va \frac{1}{4} ni qiymatni oling.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(2a^{2}-b\right)^{2} kengaytirilishi uchun ishlating.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
-\frac{1}{4} hosil qilish uchun -1 va \frac{1}{4} ni ko'paytirish.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
0 ni olish uchun -4a^{4} va 4a^{4} ni birlashtirish.
b^{2}-\frac{1}{4}b^{3}+b^{2}
0 ni olish uchun 4a^{2}b va -4a^{2}b ni birlashtirish.
2b^{2}-\frac{1}{4}b^{3}
2b^{2} ni olish uchun b^{2} va b^{2} ni birlashtirish.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(2a^{2}+b\right)^{2} kengaytirilishi uchun ishlating.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(-2a^{2}\right)^{2} ni kengaytirish.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
8 hosil qilish uchun 2 va 4 ni ko'paytirish.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
-4a^{4} ni olish uchun 4a^{4} va -8a^{4} ni birlashtirish.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
\left(\frac{1}{2}b\right)^{2} ni kengaytirish.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
2 daraja ko‘rsatkichini \frac{1}{2} ga hisoblang va \frac{1}{4} ni qiymatni oling.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(2a^{2}-b\right)^{2} kengaytirilishi uchun ishlating.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
-\frac{1}{4} hosil qilish uchun -1 va \frac{1}{4} ni ko'paytirish.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
0 ni olish uchun -4a^{4} va 4a^{4} ni birlashtirish.
b^{2}-\frac{1}{4}b^{3}+b^{2}
0 ni olish uchun 4a^{2}b va -4a^{2}b ni birlashtirish.
2b^{2}-\frac{1}{4}b^{3}
2b^{2} ni olish uchun b^{2} va b^{2} ni birlashtirish.