Baholash
-1
Omil
-1
Baham ko'rish
Klipbordga nusxa olish
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-\left(-6\right)^{2}\left(a^{2}\right)^{2}-\frac{12a^{3}-8a}{4a}
\left(-6a^{2}\right)^{2} ni kengaytirish.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-\left(-6\right)^{2}a^{4}-\frac{12a^{3}-8a}{4a}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\frac{12a^{3}-8a}{4a}
2 daraja ko‘rsatkichini -6 ga hisoblang va 36 ni qiymatni oling.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\frac{4a\left(3a^{2}-2\right)}{4a}
\frac{12a^{3}-8a}{4a} ichida hali faktorlanmagan ifodalarni faktorlang.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\left(3a^{2}-2\right)
Surat va maxrajdagi ikkala 4a ni qisqartiring.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-3a^{2}+2
3a^{2}-2 teskarisini topish uchun har birining teskarisini toping.
\left(4a^{2}-1\right)\left(9a^{2}+3\right)-36a^{4}-3a^{2}+2
2a+1 ga 2a-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36a^{4}+3a^{2}-3-36a^{4}-3a^{2}+2
4a^{2}-1 ga 9a^{2}+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3a^{2}-3-3a^{2}+2
0 ni olish uchun 36a^{4} va -36a^{4} ni birlashtirish.
-3+2
0 ni olish uchun 3a^{2} va -3a^{2} ni birlashtirish.
-1
-1 olish uchun -3 va 2'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}