x uchun yechish
x=\frac{5}{13}+\frac{14}{13}i-iy
y uchun yechish
y=ix+\left(\frac{14}{13}-\frac{5}{13}i\right)
Baham ko'rish
Klipbordga nusxa olish
x+yi=\frac{4+i}{2-3i}
Ikki tarafini 2-3i ga bo‘ling.
x+yi=\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
\frac{4+i}{2-3i}ning surat va maxrajini murakkab tutash maxraj 2+3i bilan ko‘paytiring.
x+yi=\frac{5+14i}{13}
\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)} ichidagi ko‘paytirishlarni bajaring.
x+yi=\frac{5}{13}+\frac{14}{13}i
\frac{5}{13}+\frac{14}{13}i ni olish uchun 5+14i ni 13 ga bo‘ling.
x=\frac{5}{13}+\frac{14}{13}i-yi
Ikkala tarafdan yi ni ayirish.
x=\frac{5}{13}+\frac{14}{13}i-iy
-i hosil qilish uchun -1 va i ni ko'paytirish.
x+yi=\frac{4+i}{2-3i}
Ikki tarafini 2-3i ga bo‘ling.
x+yi=\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
\frac{4+i}{2-3i}ning surat va maxrajini murakkab tutash maxraj 2+3i bilan ko‘paytiring.
x+yi=\frac{5+14i}{13}
\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)} ichidagi ko‘paytirishlarni bajaring.
x+yi=\frac{5}{13}+\frac{14}{13}i
\frac{5}{13}+\frac{14}{13}i ni olish uchun 5+14i ni 13 ga bo‘ling.
yi=\frac{5}{13}+\frac{14}{13}i-x
Ikkala tarafdan x ni ayirish.
iy=\frac{5}{13}+\frac{14}{13}i-x
Tenglama standart shaklda.
\frac{iy}{i}=\frac{\frac{5}{13}+\frac{14}{13}i-x}{i}
Ikki tarafini i ga bo‘ling.
y=\frac{\frac{5}{13}+\frac{14}{13}i-x}{i}
i ga bo'lish i ga ko'paytirishni bekor qiladi.
y=ix+\left(\frac{14}{13}-\frac{5}{13}i\right)
\frac{5}{13}+\frac{14}{13}i-x ni i ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}