Baholash
-\sqrt{3}-4\sqrt{2}\approx -7,388905057
Baham ko'rish
Klipbordga nusxa olish
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2\sqrt{2}-1\right)^{2} kengaytirilishi uchun ishlating.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
\sqrt{2} kvadrati – 2.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
9 olish uchun 8 va 1'ni qo'shing.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
Faktor: 12=2^{2}\times 3. \sqrt{2^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
\frac{2\sqrt{3}-3}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
\sqrt{3} kvadrati – 3.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 9-4\sqrt{2} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
\frac{3\left(9-4\sqrt{2}\right)}{3} va \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3} ichidagi ko‘paytirishlarni bajaring.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
27-12\sqrt{2}+6-3\sqrt{3} hisob-kitobini qiling.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
11-4\sqrt{2}-\sqrt{3} natijani olish uchun 33-12\sqrt{2}-3\sqrt{3} ning har bir ifodasini 3 ga bo‘ling.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
2\sqrt{3}-1 ga -2\sqrt{3}-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
\sqrt{3} kvadrati – 3.
11-4\sqrt{2}-\sqrt{3}-12+1
-12 hosil qilish uchun -4 va 3 ni ko'paytirish.
11-4\sqrt{2}-\sqrt{3}-11
-11 olish uchun -12 va 1'ni qo'shing.
-4\sqrt{2}-\sqrt{3}
0 olish uchun 11 dan 11 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}