Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
\left(2\sqrt{2}\right)^{2} ni kengaytirish.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
\sqrt{2} kvadrati – 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
24 hosil qilish uchun 3 va 8 ni ko'paytirish.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
\left(\sqrt{3}x\right)^{2} ni kengaytirish.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
\sqrt{3} kvadrati – 3.
24=3\times 4x^{2}-2\times 3x^{2}
4x^{2} ni olish uchun 3x^{2} va x^{2} ni birlashtirish.
24=12x^{2}-2\times 3x^{2}
12 hosil qilish uchun 3 va 4 ni ko'paytirish.
24=12x^{2}-6x^{2}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
24=6x^{2}
6x^{2} ni olish uchun 12x^{2} va -6x^{2} ni birlashtirish.
6x^{2}=24
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
6x^{2}-24=0
Ikkala tarafdan 24 ni ayirish.
x^{2}-4=0
Ikki tarafini 6 ga bo‘ling.
\left(x-2\right)\left(x+2\right)=0
Hisoblang: x^{2}-4. x^{2}-4 ni x^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
Tenglamani yechish uchun x-2=0 va x+2=0 ni yeching.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
\left(2\sqrt{2}\right)^{2} ni kengaytirish.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
\sqrt{2} kvadrati – 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
24 hosil qilish uchun 3 va 8 ni ko'paytirish.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
\left(\sqrt{3}x\right)^{2} ni kengaytirish.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
\sqrt{3} kvadrati – 3.
24=3\times 4x^{2}-2\times 3x^{2}
4x^{2} ni olish uchun 3x^{2} va x^{2} ni birlashtirish.
24=12x^{2}-2\times 3x^{2}
12 hosil qilish uchun 3 va 4 ni ko'paytirish.
24=12x^{2}-6x^{2}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
24=6x^{2}
6x^{2} ni olish uchun 12x^{2} va -6x^{2} ni birlashtirish.
6x^{2}=24
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}=\frac{24}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}=4
4 ni olish uchun 24 ni 6 ga bo‘ling.
x=2 x=-2
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
\left(2\sqrt{2}\right)^{2} ni kengaytirish.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
\sqrt{2} kvadrati – 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
24 hosil qilish uchun 3 va 8 ni ko'paytirish.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
\left(\sqrt{3}x\right)^{2} ni kengaytirish.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
\sqrt{3} kvadrati – 3.
24=3\times 4x^{2}-2\times 3x^{2}
4x^{2} ni olish uchun 3x^{2} va x^{2} ni birlashtirish.
24=12x^{2}-2\times 3x^{2}
12 hosil qilish uchun 3 va 4 ni ko'paytirish.
24=12x^{2}-6x^{2}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
24=6x^{2}
6x^{2} ni olish uchun 12x^{2} va -6x^{2} ni birlashtirish.
6x^{2}=24
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
6x^{2}-24=0
Ikkala tarafdan 24 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-24\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va -24 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\left(-24\right)}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\left(-24\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{576}}{2\times 6}
-24 ni -24 marotabaga ko'paytirish.
x=\frac{0±24}{2\times 6}
576 ning kvadrat ildizini chiqarish.
x=\frac{0±24}{12}
2 ni 6 marotabaga ko'paytirish.
x=2
x=\frac{0±24}{12} tenglamasini yeching, bunda ± musbat. 24 ni 12 ga bo'lish.
x=-2
x=\frac{0±24}{12} tenglamasini yeching, bunda ± manfiy. -24 ni 12 ga bo'lish.
x=2 x=-2
Tenglama yechildi.