Baholash
0
Omil
0
Viktorina
Arithmetic
5xshash muammolar:
( 2 + \frac { 54000 } { 60000 } + \frac { 60000 } { 64000 } ) 0015
Baham ko'rish
Klipbordga nusxa olish
\left(2+\frac{9}{10}+\frac{60000}{64000}\right)\times 0\times 0\times 15
\frac{54000}{60000} ulushini 6000 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\left(\frac{20}{10}+\frac{9}{10}+\frac{60000}{64000}\right)\times 0\times 0\times 15
2 ni \frac{20}{10} kasrga o‘giring.
\left(\frac{20+9}{10}+\frac{60000}{64000}\right)\times 0\times 0\times 15
\frac{20}{10} va \frac{9}{10} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(\frac{29}{10}+\frac{60000}{64000}\right)\times 0\times 0\times 15
29 olish uchun 20 va 9'ni qo'shing.
\left(\frac{29}{10}+\frac{15}{16}\right)\times 0\times 0\times 15
\frac{60000}{64000} ulushini 4000 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\left(\frac{232}{80}+\frac{75}{80}\right)\times 0\times 0\times 15
10 va 16 ning eng kichik umumiy karralisi 80 ga teng. \frac{29}{10} va \frac{15}{16} ni 80 maxraj bilan kasrlarga aylantirib oling.
\frac{232+75}{80}\times 0\times 0\times 15
\frac{232}{80} va \frac{75}{80} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{307}{80}\times 0\times 0\times 15
307 olish uchun 232 va 75'ni qo'shing.
0\times 0\times 15
0 hosil qilish uchun \frac{307}{80} va 0 ni ko'paytirish.
0\times 15
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
0
0 hosil qilish uchun 0 va 15 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}