x uchun yechish
x = \frac{25 - \sqrt{497}}{2} \approx 1,353251595
x = \frac{\sqrt{497} + 25}{2} \approx 23,646748405
Grafik
Baham ko'rish
Klipbordga nusxa olish
144-25x+x^{2}=112
16-x ga 9-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
144-25x+x^{2}-112=0
Ikkala tarafdan 112 ni ayirish.
32-25x+x^{2}=0
32 olish uchun 144 dan 112 ni ayirish.
x^{2}-25x+32=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 32}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -25 ni b va 32 ni c bilan almashtiring.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 32}}{2}
-25 kvadratini chiqarish.
x=\frac{-\left(-25\right)±\sqrt{625-128}}{2}
-4 ni 32 marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{497}}{2}
625 ni -128 ga qo'shish.
x=\frac{25±\sqrt{497}}{2}
-25 ning teskarisi 25 ga teng.
x=\frac{\sqrt{497}+25}{2}
x=\frac{25±\sqrt{497}}{2} tenglamasini yeching, bunda ± musbat. 25 ni \sqrt{497} ga qo'shish.
x=\frac{25-\sqrt{497}}{2}
x=\frac{25±\sqrt{497}}{2} tenglamasini yeching, bunda ± manfiy. 25 dan \sqrt{497} ni ayirish.
x=\frac{\sqrt{497}+25}{2} x=\frac{25-\sqrt{497}}{2}
Tenglama yechildi.
144-25x+x^{2}=112
16-x ga 9-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-25x+x^{2}=112-144
Ikkala tarafdan 144 ni ayirish.
-25x+x^{2}=-32
-32 olish uchun 112 dan 144 ni ayirish.
x^{2}-25x=-32
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-32+\left(-\frac{25}{2}\right)^{2}
-25 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{2} olish uchun. Keyin, -\frac{25}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-25x+\frac{625}{4}=-32+\frac{625}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{2} kvadratini chiqarish.
x^{2}-25x+\frac{625}{4}=\frac{497}{4}
-32 ni \frac{625}{4} ga qo'shish.
\left(x-\frac{25}{2}\right)^{2}=\frac{497}{4}
x^{2}-25x+\frac{625}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{497}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{2}=\frac{\sqrt{497}}{2} x-\frac{25}{2}=-\frac{\sqrt{497}}{2}
Qisqartirish.
x=\frac{\sqrt{497}+25}{2} x=\frac{25-\sqrt{497}}{2}
\frac{25}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}