Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

144-25x+x^{2}=112
16-x ga 9-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
144-25x+x^{2}-112=0
Ikkala tarafdan 112 ni ayirish.
32-25x+x^{2}=0
32 olish uchun 144 dan 112 ni ayirish.
x^{2}-25x+32=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 32}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -25 ni b va 32 ni c bilan almashtiring.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 32}}{2}
-25 kvadratini chiqarish.
x=\frac{-\left(-25\right)±\sqrt{625-128}}{2}
-4 ni 32 marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{497}}{2}
625 ni -128 ga qo'shish.
x=\frac{25±\sqrt{497}}{2}
-25 ning teskarisi 25 ga teng.
x=\frac{\sqrt{497}+25}{2}
x=\frac{25±\sqrt{497}}{2} tenglamasini yeching, bunda ± musbat. 25 ni \sqrt{497} ga qo'shish.
x=\frac{25-\sqrt{497}}{2}
x=\frac{25±\sqrt{497}}{2} tenglamasini yeching, bunda ± manfiy. 25 dan \sqrt{497} ni ayirish.
x=\frac{\sqrt{497}+25}{2} x=\frac{25-\sqrt{497}}{2}
Tenglama yechildi.
144-25x+x^{2}=112
16-x ga 9-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-25x+x^{2}=112-144
Ikkala tarafdan 144 ni ayirish.
-25x+x^{2}=-32
-32 olish uchun 112 dan 144 ni ayirish.
x^{2}-25x=-32
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-32+\left(-\frac{25}{2}\right)^{2}
-25 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{2} olish uchun. Keyin, -\frac{25}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-25x+\frac{625}{4}=-32+\frac{625}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{2} kvadratini chiqarish.
x^{2}-25x+\frac{625}{4}=\frac{497}{4}
-32 ni \frac{625}{4} ga qo'shish.
\left(x-\frac{25}{2}\right)^{2}=\frac{497}{4}
x^{2}-25x+\frac{625}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{497}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{2}=\frac{\sqrt{497}}{2} x-\frac{25}{2}=-\frac{\sqrt{497}}{2}
Qisqartirish.
x=\frac{\sqrt{497}+25}{2} x=\frac{25-\sqrt{497}}{2}
\frac{25}{2} ni tenglamaning ikkala tarafiga qo'shish.