Baholash
3p^{9}
p ga nisbatan hosilani topish
27p^{8}
Baham ko'rish
Klipbordga nusxa olish
\left(15p^{6}\right)^{1}\times \frac{1}{5p^{-3}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
15^{1}\left(p^{6}\right)^{1}\times \frac{1}{5}\times \frac{1}{p^{-3}}
Ikki yoki undan ko'p raqam koʻpaytmasini daraja ko'rsatkichiga oshirish uchun har bir raqamni daraja ko'rsatkichiga oshiring va ularning koʻpaytmasini chiqaring.
15^{1}\times \frac{1}{5}\left(p^{6}\right)^{1}\times \frac{1}{p^{-3}}
Ko'paytirishning kommutativ xususiyatidan foydalanish.
15^{1}\times \frac{1}{5}p^{6}p^{-3\left(-1\right)}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring.
15^{1}\times \frac{1}{5}p^{6}p^{3}
-3 ni -1 marotabaga ko'paytirish.
15^{1}\times \frac{1}{5}p^{6+3}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
15^{1}\times \frac{1}{5}p^{9}
6 va 3 belgilarini qo'shish.
15\times \frac{1}{5}p^{9}
15 ni 1 daraja ko'rsatgichiga oshirish.
3p^{9}
15 ni \frac{1}{5} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{15}{5}p^{6-\left(-3\right)})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}p}(3p^{9})
Arifmetik hisobni amalga oshirish.
9\times 3p^{9-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
27p^{8}
Arifmetik hisobni amalga oshirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}