x uchun yechish
x = \frac{5 \sqrt{393} - 85}{2} \approx 7,060569004
x=\frac{-5\sqrt{393}-85}{2}\approx -92,060569004
Grafik
Baham ko'rish
Klipbordga nusxa olish
-425x+7500-5x^{2}=4250
15-x ga 5x+500 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-425x+7500-5x^{2}-4250=0
Ikkala tarafdan 4250 ni ayirish.
-425x+3250-5x^{2}=0
3250 olish uchun 7500 dan 4250 ni ayirish.
-5x^{2}-425x+3250=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-425\right)±\sqrt{\left(-425\right)^{2}-4\left(-5\right)\times 3250}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, -425 ni b va 3250 ni c bilan almashtiring.
x=\frac{-\left(-425\right)±\sqrt{180625-4\left(-5\right)\times 3250}}{2\left(-5\right)}
-425 kvadratini chiqarish.
x=\frac{-\left(-425\right)±\sqrt{180625+20\times 3250}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-425\right)±\sqrt{180625+65000}}{2\left(-5\right)}
20 ni 3250 marotabaga ko'paytirish.
x=\frac{-\left(-425\right)±\sqrt{245625}}{2\left(-5\right)}
180625 ni 65000 ga qo'shish.
x=\frac{-\left(-425\right)±25\sqrt{393}}{2\left(-5\right)}
245625 ning kvadrat ildizini chiqarish.
x=\frac{425±25\sqrt{393}}{2\left(-5\right)}
-425 ning teskarisi 425 ga teng.
x=\frac{425±25\sqrt{393}}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{25\sqrt{393}+425}{-10}
x=\frac{425±25\sqrt{393}}{-10} tenglamasini yeching, bunda ± musbat. 425 ni 25\sqrt{393} ga qo'shish.
x=\frac{-5\sqrt{393}-85}{2}
425+25\sqrt{393} ni -10 ga bo'lish.
x=\frac{425-25\sqrt{393}}{-10}
x=\frac{425±25\sqrt{393}}{-10} tenglamasini yeching, bunda ± manfiy. 425 dan 25\sqrt{393} ni ayirish.
x=\frac{5\sqrt{393}-85}{2}
425-25\sqrt{393} ni -10 ga bo'lish.
x=\frac{-5\sqrt{393}-85}{2} x=\frac{5\sqrt{393}-85}{2}
Tenglama yechildi.
-425x+7500-5x^{2}=4250
15-x ga 5x+500 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-425x-5x^{2}=4250-7500
Ikkala tarafdan 7500 ni ayirish.
-425x-5x^{2}=-3250
-3250 olish uchun 4250 dan 7500 ni ayirish.
-5x^{2}-425x=-3250
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5x^{2}-425x}{-5}=-\frac{3250}{-5}
Ikki tarafini -5 ga bo‘ling.
x^{2}+\left(-\frac{425}{-5}\right)x=-\frac{3250}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
x^{2}+85x=-\frac{3250}{-5}
-425 ni -5 ga bo'lish.
x^{2}+85x=650
-3250 ni -5 ga bo'lish.
x^{2}+85x+\left(\frac{85}{2}\right)^{2}=650+\left(\frac{85}{2}\right)^{2}
85 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{85}{2} olish uchun. Keyin, \frac{85}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+85x+\frac{7225}{4}=650+\frac{7225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{85}{2} kvadratini chiqarish.
x^{2}+85x+\frac{7225}{4}=\frac{9825}{4}
650 ni \frac{7225}{4} ga qo'shish.
\left(x+\frac{85}{2}\right)^{2}=\frac{9825}{4}
x^{2}+85x+\frac{7225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{85}{2}\right)^{2}}=\sqrt{\frac{9825}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{85}{2}=\frac{5\sqrt{393}}{2} x+\frac{85}{2}=-\frac{5\sqrt{393}}{2}
Qisqartirish.
x=\frac{5\sqrt{393}-85}{2} x=\frac{-5\sqrt{393}-85}{2}
Tenglamaning ikkala tarafidan \frac{85}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}