x uchun yechish
x = -\frac{905}{278} = -3\frac{71}{278} \approx -3,255395683
Grafik
Baham ko'rish
Klipbordga nusxa olish
75\left(122+27x\right)\times 2-\left(15x-0\times 525\right)=82575+1125\left(11x-33\right)
Tenglamaning ikkala tarafini 75 ga ko'paytirish.
150\left(122+27x\right)-\left(15x-0\times 525\right)=82575+1125\left(11x-33\right)
150 hosil qilish uchun 75 va 2 ni ko'paytirish.
18300+4050x-\left(15x-0\times 525\right)=82575+1125\left(11x-33\right)
150 ga 122+27x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18300+4050x-\left(15x-0\right)=82575+1125\left(11x-33\right)
0 hosil qilish uchun 0 va 525 ni ko'paytirish.
18300+4050x-\left(15x-0\right)=82575+12375x-37125
1125 ga 11x-33 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18300+4050x-\left(15x-0\right)=45450+12375x
45450 olish uchun 82575 dan 37125 ni ayirish.
18300+4050x-\left(15x-0\right)-12375x=45450
Ikkala tarafdan 12375x ni ayirish.
18300-8325x-\left(15x-0\right)=45450
-8325x ni olish uchun 4050x va -12375x ni birlashtirish.
-8325x-\left(15x-0\right)=45450-18300
Ikkala tarafdan 18300 ni ayirish.
-8325x-\left(15x-0\right)=27150
27150 olish uchun 45450 dan 18300 ni ayirish.
-8325x-15x=27150
Shartlarni qayta saralash.
-8340x=27150
-8340x ni olish uchun -8325x va -15x ni birlashtirish.
x=\frac{27150}{-8340}
Ikki tarafini -8340 ga bo‘ling.
x=-\frac{905}{278}
\frac{27150}{-8340} ulushini 30 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}