x uchun yechish
x=\frac{\sqrt{33269649630}}{300}+608\approx 1215,998991501
x=-\frac{\sqrt{33269649630}}{300}+608\approx 0,001008499
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
( 1215 - x ) \times 30000 + 30000 = \frac { 36790 } { x }
Baham ko'rish
Klipbordga nusxa olish
\left(1215-x\right)\times 30000x+x\times 30000=36790
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(36450000-30000x\right)x+x\times 30000=36790
1215-x ga 30000 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36450000x-30000x^{2}+x\times 30000=36790
36450000-30000x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36480000x-30000x^{2}=36790
36480000x ni olish uchun 36450000x va x\times 30000 ni birlashtirish.
36480000x-30000x^{2}-36790=0
Ikkala tarafdan 36790 ni ayirish.
-30000x^{2}+36480000x-36790=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-36480000±\sqrt{36480000^{2}-4\left(-30000\right)\left(-36790\right)}}{2\left(-30000\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -30000 ni a, 36480000 ni b va -36790 ni c bilan almashtiring.
x=\frac{-36480000±\sqrt{1330790400000000-4\left(-30000\right)\left(-36790\right)}}{2\left(-30000\right)}
36480000 kvadratini chiqarish.
x=\frac{-36480000±\sqrt{1330790400000000+120000\left(-36790\right)}}{2\left(-30000\right)}
-4 ni -30000 marotabaga ko'paytirish.
x=\frac{-36480000±\sqrt{1330790400000000-4414800000}}{2\left(-30000\right)}
120000 ni -36790 marotabaga ko'paytirish.
x=\frac{-36480000±\sqrt{1330785985200000}}{2\left(-30000\right)}
1330790400000000 ni -4414800000 ga qo'shish.
x=\frac{-36480000±200\sqrt{33269649630}}{2\left(-30000\right)}
1330785985200000 ning kvadrat ildizini chiqarish.
x=\frac{-36480000±200\sqrt{33269649630}}{-60000}
2 ni -30000 marotabaga ko'paytirish.
x=\frac{200\sqrt{33269649630}-36480000}{-60000}
x=\frac{-36480000±200\sqrt{33269649630}}{-60000} tenglamasini yeching, bunda ± musbat. -36480000 ni 200\sqrt{33269649630} ga qo'shish.
x=-\frac{\sqrt{33269649630}}{300}+608
-36480000+200\sqrt{33269649630} ni -60000 ga bo'lish.
x=\frac{-200\sqrt{33269649630}-36480000}{-60000}
x=\frac{-36480000±200\sqrt{33269649630}}{-60000} tenglamasini yeching, bunda ± manfiy. -36480000 dan 200\sqrt{33269649630} ni ayirish.
x=\frac{\sqrt{33269649630}}{300}+608
-36480000-200\sqrt{33269649630} ni -60000 ga bo'lish.
x=-\frac{\sqrt{33269649630}}{300}+608 x=\frac{\sqrt{33269649630}}{300}+608
Tenglama yechildi.
\left(1215-x\right)\times 30000x+x\times 30000=36790
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(36450000-30000x\right)x+x\times 30000=36790
1215-x ga 30000 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36450000x-30000x^{2}+x\times 30000=36790
36450000-30000x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36480000x-30000x^{2}=36790
36480000x ni olish uchun 36450000x va x\times 30000 ni birlashtirish.
-30000x^{2}+36480000x=36790
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-30000x^{2}+36480000x}{-30000}=\frac{36790}{-30000}
Ikki tarafini -30000 ga bo‘ling.
x^{2}+\frac{36480000}{-30000}x=\frac{36790}{-30000}
-30000 ga bo'lish -30000 ga ko'paytirishni bekor qiladi.
x^{2}-1216x=\frac{36790}{-30000}
36480000 ni -30000 ga bo'lish.
x^{2}-1216x=-\frac{3679}{3000}
\frac{36790}{-30000} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-1216x+\left(-608\right)^{2}=-\frac{3679}{3000}+\left(-608\right)^{2}
-1216 ni bo‘lish, x shartining koeffitsienti, 2 ga -608 olish uchun. Keyin, -608 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-1216x+369664=-\frac{3679}{3000}+369664
-608 kvadratini chiqarish.
x^{2}-1216x+369664=\frac{1108988321}{3000}
-\frac{3679}{3000} ni 369664 ga qo'shish.
\left(x-608\right)^{2}=\frac{1108988321}{3000}
x^{2}-1216x+369664 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-608\right)^{2}}=\sqrt{\frac{1108988321}{3000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-608=\frac{\sqrt{33269649630}}{300} x-608=-\frac{\sqrt{33269649630}}{300}
Qisqartirish.
x=\frac{\sqrt{33269649630}}{300}+608 x=-\frac{\sqrt{33269649630}}{300}+608
608 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}